2019 Volume 9 Issue 6
Article Contents

Jiqiang Jiang, Hongchuan Wang. EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A FRACTIONAL DIFFERENTIAL EQUATION WITH MULTI-POINT BOUNDARY VALUE PROBLEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2156-2168. doi: 10.11948/20180286
Citation: Jiqiang Jiang, Hongchuan Wang. EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A FRACTIONAL DIFFERENTIAL EQUATION WITH MULTI-POINT BOUNDARY VALUE PROBLEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2156-2168. doi: 10.11948/20180286

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A FRACTIONAL DIFFERENTIAL EQUATION WITH MULTI-POINT BOUNDARY VALUE PROBLEMS

  • Corresponding author: Email address:qfjjq@163.com(J. Jiang) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11601048) and Doctoral Scientific Research Foundation of Qufu Normal University and Youth Foundation of Qufu Normal University (BSQD20130140)
  • In this paper, we study the existence and uniqueness solutions of a fractional differential equation with multi-point boundary value problems. By using the fixed point theorems, some new results are established and two examples are given to demonstrate the application of main results.
    MSC: 26A33, 34B10, 34B15
  • 加载中
  • [1] B. Ahmad, Sharp estimates for the unique solution of two-point fractional-order boundary value problems, Appl. Math. Lett., 2017, 65, 77-82. doi: 10.1016/j.aml.2016.10.008

    CrossRef Google Scholar

    [2] Z. Bai, Eigenvalue intervals for a class of fractional boundary value problem, Comput. Math. Appl., 2012, 64, 3253-3257. doi: 10.1016/j.camwa.2012.01.004

    CrossRef Google Scholar

    [3] Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., 2010, 72, 916-924. doi: 10.1016/j.na.2009.07.033

    CrossRef Google Scholar

    [4] Z. Bai, The existence of solutions for a fractional multi-point boundary value problem, Comput. Math. Appl., 2010, 60, 2364-2372. doi: 10.1016/j.camwa.2010.08.030

    CrossRef Google Scholar

    [5] D. Bǎleanu, O. G. Mustafa and R. P. Agarwal, On $L^p$-solutions for a class of sequential fractional differential equations, Appl. Math. Comput., 2011, 218, 2074-2081.

    Google Scholar

    [6] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal., 2009, 71, 2391-2396. doi: 10.1016/j.na.2009.01.073

    CrossRef Google Scholar

    [7] D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Am. Math. Soc., 1969, 20, 458-464. doi: 10.1090/S0002-9939-1969-0239559-9

    CrossRef Google Scholar

    [8] A. Cabada, T. Kisela, Existence of positive periodic solutions of some nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 2017, 50, 51-67. doi: 10.1016/j.cnsns.2017.02.010

    CrossRef Google Scholar

    [9] Y. Cui, Uniqueness of solution for boundary value problems for fractional differential equations, Appl. Math. Lett., 2016, 51, 48-54. doi: 10.1016/j.aml.2015.07.002

    CrossRef Google Scholar

    [10] Y. Cui, W. Ma, Q. Sun, X. Su, New uniqueness results for boundary value problem of fractional differential equation, Nonlinear Anal., Model. Control, 2018, 23, 31-39.

    Google Scholar

    [11] M. El-Shahed, J. Nieto, Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order, Comput. Math. Appl., 2010, 59, 3438-3443. doi: 10.1016/j.camwa.2010.03.031

    CrossRef Google Scholar

    [12] C. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett., 2010, 23, 1050-1055. doi: 10.1016/j.aml.2010.04.035

    CrossRef Google Scholar

    [13] J. R. Graef, L. Kong, B. Yang, Positive solutions for a fractional boundary value problem, Appl. Math. Lett., 2016, 56, 49-55. doi: 10.1016/j.aml.2015.12.006

    CrossRef Google Scholar

    [14] A. Granas, J. Dugundji, Fixed Point Theory, Springer, New York, 2003.

    Google Scholar

    [15] Y. Guan, Z. Zhao, X. Lin, On the existence of solutions for impulsive fractional differential equations, Adv. Math. Phys., 2017, Article ID 1207456.

    Google Scholar

    [16] L. Guo, L. Liu, Y. Wu, Uniqueness of iterative positive solutions for the singular fractional differential equations with integral boundary conditions, Bound. Value Probl., 2016, 147. DOI: 10.1186/s13661-016-0652-1.

    Google Scholar

    [17] L. Guo, L. Liu, Y. Wu, Iterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters, Nonlinear Anal., Model. Control, 2018, 23(2), 182-203. doi: 10.15388/NA.2018.2.3

    CrossRef Google Scholar

    [18] X. Hao, H. Wang, L. Liu, Y. Cui, Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator, Bound. Value Probl., 2017, 182. DOI: 10.1186/s13661-017-0915-5.

    Google Scholar

    [19] J. Henderson, R. Luca, Existence of positive solutions for a singular fractional boundary value problem, Nonlinear Anal., Model. Control, 2017, 22, 99-114.

    Google Scholar

    [20] J. Henderson, R. Luca, Systems of Riemann-Liouville fractional equations with multi-point boundary conditions, Aplied Math. Comput., 2017, 309, 303-323. doi: 10.1016/j.amc.2017.03.044

    CrossRef Google Scholar

    [21] T. Jankowski, Positive solutions to fractional differential equations involving Stieltjes integral conditions, Appl. Math. Comput., 2014, 241, 200-213.

    Google Scholar

    [22] J. Jiang, L. Liu, Existence of solutions for a sequential fractional differential system with coupled boundary conditions, Bound. Value Probl., 2016, 159. DOI: 10.1186/s13661-016-0666-8.

    CrossRef Google Scholar

    [23] J. Jiang, W. Liu, H. Wang, Positive solutions to singular Dirichlet-type boundary value problems of nonlinear fractional differential equations, Adv. Difference Equ., 2018, 169. DOI: 10.1186/s13662-018-1627-6.

    CrossRef Google Scholar

    [24] J. Jiang, L. Liu, Y. Wu, Positive solutions to singular fractional differential system with coupled boundary conditions, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, 3061-3074. doi: 10.1016/j.cnsns.2013.04.009

    CrossRef Google Scholar

    [25] J. Jiang, L. Liu, Y. Wu, Multiple positive solutions of singular fractional differential system involving Stieltjes integral conditions, Electron. J. Qual. Theory Differ. Equ., 2012, 43, 1-18.

    Google Scholar

    [26] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    Google Scholar

    [27] H. Li, L. Liu, Y. Wu, Positive solutions for singular nonlinear fractional differential equation with integral boundary conditions, Bound. Value Probl., 2015, 232. DOI: 10.1186/s13661-015-0493-3.

    CrossRef Google Scholar

    [28] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [29] H. Salen, On the fractional order $m$-point boundary value problem in reflexive Banach spaces and weak topologies, J. Comput. Appl. Math., 2009, 224, 565-572. doi: 10.1016/j.cam.2008.05.033

    CrossRef Google Scholar

    [30] D. R. Smart, Fixed Point Theorems, Cambridge University Press, 1980.

    Google Scholar

    [31] Y. Wang, J. Jiang, Existence and nonexistence of positive solutions for the fractional coupled system involving generalized $p$-Laplacian, Adv. Difference Equ., 2017, 337. DOI: 10.1186/s13662-017-1385-x.

    Google Scholar

    [32] Y. Wang, L. Liu, Y. Wu, Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity, Nonlinear Anal., 2011, 74, 6434-6441. doi: 10.1016/j.na.2011.06.026

    CrossRef Google Scholar

    [33] Y. Wang, L. Liu, X. Zhang, Y. Wu, Positive solutions of a fractional semipositone differential system arising from the study of HIV infection models, Aplied Math. Comput., 2015, 258, 312-324. doi: 10.1016/j.amc.2015.01.080

    CrossRef Google Scholar

    [34] J. Xu, Z. Wei, W. Dong, Uniqueness of positive solutions for a class of fractional boundary value problems, Appl. Math. Lett., 2012, 25, 590-593. doi: 10.1016/j.aml.2011.09.065

    CrossRef Google Scholar

    [35] X. Zhang, L. Liu, B. Wiwatanapataphee, Y. Wu, The eigenvalue for a class of singular $p$-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition, Appl. Math. Comput., 2014, 235, 412-422.

    Google Scholar

    [36] X. Zhang, L. Liu, Y. Wu, The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives, Appl. Math. Comput., 2012, 218, 8526-8536.

    Google Scholar

    [37] X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a singular fractional differential system involving deriva-tives, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, 1400-1409. doi: 10.1016/j.cnsns.2012.08.033

    CrossRef Google Scholar

    [38] X. Zhang, L. Liu, Y. Wu, Variational structure and multiple solutions for a fractional advection-dispersion equation, Comput. Math. Appl., 2014, 68, 1794-1805. doi: 10.1016/j.camwa.2014.10.011

    CrossRef Google Scholar

    [39] X. Zhang, L. Liu, Y. Wu, Y. Cui, New result on the critical exponent for solution of an ordinary fractional differential problem, J. Funct. Spaces, 2017, Article ID 3976469.

    Google Scholar

    [40] X. Zhang, L. Liu, Y. Wu, B. Wiwatanapataphee, Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion, Appl. Math. Lett., 2017, 66, 1-8. doi: 10.1016/j.aml.2016.10.015

    CrossRef Google Scholar

    [41] X. Zhang, L. Liu, Y. Wu, B. Wiwatanapataphee, The spectral analysis for a singular fractional differential equation with a signed measure, Appl. Math. Comput., 2015, 257, 252-263.

    Google Scholar

    [42] X. Zhang, Q. Zhong, Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables, Appl. Math. Lett., 2018, 80, 12-19. doi: 10.1016/j.aml.2017.12.022

    CrossRef Google Scholar

    [43] X. Zhang, Q. Zhong, Uniqueness of solution for higher-order fractional differential equations with conjugate type integral conditions, Fract. Calc. Appl. Anal., 2017, 20, 1471-1484.

    Google Scholar

    [44] Y. Zou, G. He, On the uniqueness of solutions for a class of fractional differential equations, Appl. Math. Lett., 2017, 74, 68-73. doi: 10.1016/j.aml.2017.05.011

    CrossRef Google Scholar

Article Metrics

Article views(3209) PDF downloads(727) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint