[1]
|
A. Babiarz, A. Czornik and M. Niezabitowski, Output controllability of discrete-time linear switched systems, Nonlinear Analysis: Hybrid Systems, 2016, 21, 1-10. doi: 10.1016/j.nahs.2015.12.004
CrossRef Google Scholar
|
[2]
|
L. Benvenuti and L. Farina, Positive and compartmental systems, IEEE Transactions on Automatic Control, 2002, 47(2), 370-373.
Google Scholar
|
[3]
|
M. Busłowicz, On some properties of the solution of state equation of discrete-time systems with delays, Zesz. Nauk. Polit. Bial., Elektrotechnika, 1983, 1, 17-29 (in Polish).
Google Scholar
|
[4]
|
M. Busłowicz, Controllability, reachability and minimum energy control of fractional discrete-time linear systems with multiple delays in state, Bulletin of the Polish Academy of Sciences: Technical Sciences, 2014, 62(2), 233-239.
Google Scholar
|
[5]
|
C. T. Chen, Introduction to Linear System Theory, Holt, Rinehart and Winston Inc., New York, 1970.
Google Scholar
|
[6]
|
L. Deng, S. Fu, Y. Li and P. Zhu, Robust output controllability analysis and control design for incomplete boolean networks with disturbance inputs, Mathematical Problems in Engineering, 2018. DOI: 10.1155/2018/2940105.
Google Scholar
|
[7]
|
A. Dzieliński, D. Sierociuk and G. Sarwas, Some applications of fractional order calculus, Bulletin of the Polish Academy of Sciences: Technical Sciences, 2010, 58(4), 583-592.
Google Scholar
|
[8]
|
J. Eden, Y. Tan, D. Lau and D. Oetomo, On the positive output controllability of linear time invariant systems, Automatica, 2016, 71, 202-209. doi: 10.1016/j.automatica.2016.04.017
CrossRef Google Scholar
|
[9]
|
L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications, J. Wiley & Sons, New York, 2000.
Google Scholar
|
[10]
|
M. I. García-Planas and J.L. Domínguez-García, Alternative tests for functional and pointwise output-controllability of linear time-invariant systems, Systems & Control Letters, 2013, 62(5), 382-387.
Google Scholar
|
[11]
|
V. Glizer, Euclidean space output controllability of singularly perturbed systems with small state delays, Journal of Applied Mathematics and Computing, 2018, 57(1-2), 1-38. doi: 10.1007/s12190-017-1092-5
CrossRef Google Scholar
|
[12]
|
S. Guermach, S. Djennoune and M. Bettayeb, Controllability and observability of linear discrete-time fractional-order systems, International Journal of Applied Mathematics and Computer Science, 2008, 18(2), 213-222. doi: 10.2478/v10006-008-0019-6
CrossRef Google Scholar
|
[13]
|
T. Kaczorek, Positive 1D and 2D Systems, Springer-Verlag, London, 2002.
Google Scholar
|
[14]
|
T. Kaczorek, Output-reachability of positive linear discrete-time systems, Proc. of 7th Int. Workshop "Computational Problems of Electrical Engineering" CPEE'06, Odessa, Ukraine, 2006, 64-68.
Google Scholar
|
[15]
|
T. Kaczorek, Output-reachability of positive linear discrete-time systems with delays, Archives of Control Sciences, 2006, 16(3), 247-255.
Google Scholar
|
[16]
|
T. Kaczorek, Reachability and controllability to zero of positive fractional discrete-time systems, Machine Intelligence and Robotic Control, 2007, 6(4), 139-143.
Google Scholar
|
[17]
|
T. Kaczorek, Minimum energy control problem of positive fractional discrete-time systems, In : Proc. 22ndEur. Conf. on Modeling and Simulation 1, 2008.
Google Scholar
|
[18]
|
T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin, 2011.
Google Scholar
|
[19]
|
R. E. Kalman, On the general theory of control systems, Proc. of the First Intern, Congress on Automatic Control, Butterworth, London, 1960, 1, 481-493.
Google Scholar
|
[20]
|
J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
Google Scholar
|
[21]
|
J. Klamka, Controllability and minimum energy control problem of fractional discrete-time systems, In D. Baleanu, Z. B. Guvenc and J. A.T. Machado (Eds.) New Trends in Nanotechnology and Fractional Calculus Applications, Springer-Verlag, New York, 2010, 503-509.
Google Scholar
|
[22]
|
J. Klamka, Controllability of dynamical systems. A survey, Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61(2), 335-342. doi: 10.2478/bpasts-2013-0031
CrossRef Google Scholar
|
[23]
|
R. Kociszewski, Minimum energy control of fractional discrete-time linear systems with delays in state and control, In: R. Szewczyk, C. Zieliński, M. Kaliczyńska (Eds.) Recent Advances in Automation, Robotics and Measuring Techniques. Advances in Intelligent Systems and Computing, Springer, cham, 2014, 267, 127-136.
Google Scholar
|
[24]
|
R. Kociszewski, Output controllability problem of fractional discrete-time systems with multiple delays in state and control vector, In: R. Szewczyk, C. Zieliński, M. Kaliczyńska (Eds) Automation 2018. Advances in Intelligent Systems and Computing, Springer, Cham, 2018, 743, 203-212.
Google Scholar
|
[25]
|
D. Lau, D. Oetomo and S. K. Halgamuge, Generalized modeling of multilink cable-driven manipulators with arbitrary routing using the cable-routing matrix, IEEE Transactions on Robotics, 2013, 29(5), 1102-1113. doi: 10.1109/TRO.2013.2264866
CrossRef Google Scholar
|
[26]
|
M. Lhous, M. Rachik, J. Bouyaghroumni and A. Tridane, On the output controllability of a class of discrete nonlinear distributed systems: a fixed point theorem approach, International Journal of Dynamics and Control, 2018, 6(2), 768-777. doi: 10.1007/s40435-017-0315-9
CrossRef Google Scholar
|
[27]
|
X. Liu, L. Wang, W. Yu and S. Zhong, Constrained control of positive discrete-time systems with delays, IEEE Transactions on Circuits and System II, 2008, 55(2), 193-197. doi: 10.1109/TCSII.2007.910910
CrossRef Google Scholar
|
[28]
|
D. G. Luenberger, Introduction to Dynamic Systems: Theory, Models and Applications, John Wiley & Sons, New York, 1979.
Google Scholar
|
[29]
|
Y. Luo and Y.Q. Chen, Fractional Order Motion Controls, John Wiley & Sons Ltd, Chichester, 2013.
Google Scholar
|
[30]
|
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differenctial Equations, John Wiley & Sons, New York, 1993.
Google Scholar
|
[31]
|
C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue and V. Feliu-Batlle, Fractional-Order Systems and Controls Fundamentals and Applications, Springer, London, 2010.
Google Scholar
|
[32]
|
M. Naim, F. Lahmidi, A. Namir and M. Rachik, On the output controllability of positive discrete linear delay systems, Abstract and Applied Analysis, 2017. DOI: 10.1155/2017/3651271.
Google Scholar
|
[33]
|
K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
Google Scholar
|
[34]
|
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
Google Scholar
|
[35]
|
J. Shen and J. Lam, On l∞ and L∞ gains for positive systems with bounded time-varying delays, International Journal of Systems Science, 2015, 46(11), 1953-1960. doi: 10.1080/00207721.2013.843217
CrossRef Google Scholar
|
[36]
|
W. Trzasko, Reachability and controllability of positive fractional-order discrete-time systems, Pomiary Automatyka Robotyka, 2013, 17(2), 365-370.
Google Scholar
|