[1]
|
K. Aydemir, H. Olǧar, O. S. Mukhtarov and F. S. Muhtarov, Differential operator equations with interface conditions in modified direct sum spaces, Filomat, 2018, 32(3), 921-931. doi: 10.2298/FIL1803921A
CrossRef Google Scholar
|
[2]
|
D. R. Anderson, Even-order self-adjoint boundary value problems for proportional derivatives, Electron. J. Diff. Eqs., 2017, 2017(210), 1-18.
Google Scholar
|
[3]
|
D. R. Anderson, Second-order self-adjoint differential equations using a conformable proportional derivative, 2016.
Google Scholar
|
[4]
|
P. B. Bailey, W. N. Everitt and A. Zettl, The SLEIGN2 Sturm-Liouville code, ACM Trans. Math Software, 1998, 27(2), 143-192.
Google Scholar
|
[5]
|
D. Cao, A. Ibraguimov and A. I. Nazarov, Mixed boundary value problems for non-divergence type elliptic equations in unbounded domain, 2018.
Google Scholar
|
[6]
|
X. Cao, Q. Kong, H. Wu and A. Zettl, Geometric Aspects of Sturm-Liouville Problems III, Level Surfaces of the nth eigenvalue, J. Comput. Appl. Math., 2007, 208(1), 176-193. doi: 10.1016/j.cam.2006.10.040
CrossRef Google Scholar
|
[7]
|
N. Dunford and J. T. Schwartz, Linear Operators, v. II, Wiley, New York, 1963.
Google Scholar
|
[8]
|
A. Goriunov, V. Mikhailets and K. Pankrashkin, Formally self-adjoint quasi-differential operators and boundary value problems, Electron. J. Diff. Eqs., 2013, 2013(101), 1-16.
Google Scholar
|
[9]
|
C. Gao, X. Li and R. Ma, Eigenvalues of a linear fourth-order differential operator with squared spectral parameter in a boundary condition, Mediterr. J. Math., 2018, 15(3), 107. doi: 10.1007/s00009-018-1148-2
CrossRef Google Scholar
|
[10]
|
M. A. Han, S. F. Zhou, Y. P. Xing and W. Ding, Ordinary Differential Equations (2nd Edition), Higher Education Press, 2018 (in Chinese).
Google Scholar
|
[11]
|
X. Hao, J. Sun and A. Zettl, Canonical forms of self-adjoint boundary conditions for differential operators of order four, J. Math. Anal. Appl., 2012, 387(2), 1176-1187. doi: 10.1016/j.jmaa.2011.10.025
CrossRef Google Scholar
|
[12]
|
K. Haertzan, Q. Kong, H. Wu and A. Zettl, Geometric Aspects of Sturm-Liouville Problems II, Subspace of boundary conditions for left-definiteness, Tam. Math. Soc., 2003, 356(1), 136-157.
Google Scholar
|
[13]
|
D. L. C. R. John, D. I. Merino and A. T. Paras, Every 2n-by-2n complex matrix is a sum of three symplectic matrices, Linear Algebra Appl., 2017, 517, 199-206. doi: 10.1016/j.laa.2016.12.016
CrossRef Google Scholar
|
[14]
|
Q. Kong, H. Wu and A. Zettl, Dependence of the $n$th sturm-liouville eigenvalue on the problem, J. Diff. Eqs., 1999, 156(2), 328-354. doi: 10.1006/jdeq.1998.3613
CrossRef Google Scholar
|
[15]
|
Q. Kong, H. Wu and A. Zettl, Geometric Aspects of Sturm-Liouville Problems I, Structures on spaces of boundary conditions, Proc. Roy. Soc. Edinburgh, 2000, 130(3), 561-589 doi: 10.1017/S0308210500000305
CrossRef Google Scholar
|
[16]
|
Q. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Diff. Eqs., 1996, 131(1), 1-19. doi: 10.1006/jdeq.1996.0154
CrossRef Google Scholar
|
[17]
|
M. Möller and B. Zinsou, Self-adjoint higher order differential operators with eigenvalue parameter dependent boundary conditions, Bound. Value Probl., 2015, 2015(1), 79. doi: 10.1186/s13661-015-0341-5
CrossRef Google Scholar
|
[18]
|
M. A. Naimark, Linear differential operators, Ungar, New York, 1968.
Google Scholar
|
[19]
|
J. Sun, Z. Wang and W. Y. Wang, Spectral analysis of linear operators, Beijing Science Press, 2015 (in Chinese).
Google Scholar
|
[20]
|
E. Uǧurlu, Regular third order boundary value problem, Appl. Math. Comput., 2019, 343, 247-257.
Google Scholar
|
[21]
|
A. Wang, J. Sun and A. Zettl, The classification of self-adjoint boundary conditions: Separated, coupled, and mixed, J. Funct. Anal., 2008, 255(6), 1554-1573. doi: 10.1016/j.jfa.2008.05.003
CrossRef Google Scholar
|
[22]
|
A. Wang, J. Sun and A. Zettl, An interesting matrix equation, Miskolc Math. Notes, 2009, 1(1), 107-113.
Google Scholar
|
[23]
|
A. Wang, J. Sun and A. Zettl, Characterrization of domains of self-adjoint ordinary differential operators, J. Diff. Eqs., 2009, 246(4), 1600-1622. doi: 10.1016/j.jde.2008.11.001
CrossRef Google Scholar
|
[24]
|
A. Zettl and J. Sun, Survey article: Self-adjoint ordinary differential operators and their spectrum, Rocky Mt. J. Math., 2015, 45(3), 763-886. doi: 10.1216/RMJ-2015-45-3-763
CrossRef Google Scholar
|
[25]
|
A. Zettl, Sturm-Liouville Theory, Ameracan Mathematical Society, Mathematical Surveys and Monographs, 2005.
Google Scholar
|
[26]
|
A. Zettl, Eigenvalues of regular self-adjoint Sturm-Liouville problems, Communications in Applied Analysis, 2014, 18, 365-400.
Google Scholar
|
[27]
|
A. M. Zhao, M. L. Li and M. A. Han, Basic Theory of Differential Equations, Beijing Science Press, 2018 (in Chinese).
Google Scholar
|