2019 Volume 9 Issue 6
Article Contents

Qinglan Bao, Jiong Sun, Xiaoling Hao, Anton Zettl. NEW CANONICAL FORMS OF SELF-ADJOINT BOUNDARY CONDITIONS FOR REGULAR DIFFERENTIAL OPERATORS OF ORDER FOUR[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2190-2211. doi: 10.11948/20180343
Citation: Qinglan Bao, Jiong Sun, Xiaoling Hao, Anton Zettl. NEW CANONICAL FORMS OF SELF-ADJOINT BOUNDARY CONDITIONS FOR REGULAR DIFFERENTIAL OPERATORS OF ORDER FOUR[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2190-2211. doi: 10.11948/20180343

NEW CANONICAL FORMS OF SELF-ADJOINT BOUNDARY CONDITIONS FOR REGULAR DIFFERENTIAL OPERATORS OF ORDER FOUR

  • In this paper, we find new canonical forms of self-adjoint boundary conditions for regular differential operators of order two and four. In the second order case the new canonical form unifies the coupled and separated canonical forms which were known before. Our fourth order forms are similar to the new second order ones and also unify the coupled and separated forms. Canonical forms of self-adjoint boundary conditions are instrumental in the study of the dependence of eigenvalues on the boundary conditions and for their numerical computation. In the second order case this dependence is now well understood due to some surprisingly recent results given the long history and voluminous literature of Sturm-Liouville problems. And there is a robust code for their computation: SLEIGN2.
    MSC: 34B24, 34L15, 34B08, 34L05
  • 加载中
  • [1] K. Aydemir, H. Olǧar, O. S. Mukhtarov and F. S. Muhtarov, Differential operator equations with interface conditions in modified direct sum spaces, Filomat, 2018, 32(3), 921-931. doi: 10.2298/FIL1803921A

    CrossRef Google Scholar

    [2] D. R. Anderson, Even-order self-adjoint boundary value problems for proportional derivatives, Electron. J. Diff. Eqs., 2017, 2017(210), 1-18.

    Google Scholar

    [3] D. R. Anderson, Second-order self-adjoint differential equations using a conformable proportional derivative, 2016.

    Google Scholar

    [4] P. B. Bailey, W. N. Everitt and A. Zettl, The SLEIGN2 Sturm-Liouville code, ACM Trans. Math Software, 1998, 27(2), 143-192.

    Google Scholar

    [5] D. Cao, A. Ibraguimov and A. I. Nazarov, Mixed boundary value problems for non-divergence type elliptic equations in unbounded domain, 2018.

    Google Scholar

    [6] X. Cao, Q. Kong, H. Wu and A. Zettl, Geometric Aspects of Sturm-Liouville Problems III, Level Surfaces of the nth eigenvalue, J. Comput. Appl. Math., 2007, 208(1), 176-193. doi: 10.1016/j.cam.2006.10.040

    CrossRef Google Scholar

    [7] N. Dunford and J. T. Schwartz, Linear Operators, v. II, Wiley, New York, 1963.

    Google Scholar

    [8] A. Goriunov, V. Mikhailets and K. Pankrashkin, Formally self-adjoint quasi-differential operators and boundary value problems, Electron. J. Diff. Eqs., 2013, 2013(101), 1-16.

    Google Scholar

    [9] C. Gao, X. Li and R. Ma, Eigenvalues of a linear fourth-order differential operator with squared spectral parameter in a boundary condition, Mediterr. J. Math., 2018, 15(3), 107. doi: 10.1007/s00009-018-1148-2

    CrossRef Google Scholar

    [10] M. A. Han, S. F. Zhou, Y. P. Xing and W. Ding, Ordinary Differential Equations (2nd Edition), Higher Education Press, 2018 (in Chinese).

    Google Scholar

    [11] X. Hao, J. Sun and A. Zettl, Canonical forms of self-adjoint boundary conditions for differential operators of order four, J. Math. Anal. Appl., 2012, 387(2), 1176-1187. doi: 10.1016/j.jmaa.2011.10.025

    CrossRef Google Scholar

    [12] K. Haertzan, Q. Kong, H. Wu and A. Zettl, Geometric Aspects of Sturm-Liouville Problems II, Subspace of boundary conditions for left-definiteness, Tam. Math. Soc., 2003, 356(1), 136-157.

    Google Scholar

    [13] D. L. C. R. John, D. I. Merino and A. T. Paras, Every 2n-by-2n complex matrix is a sum of three symplectic matrices, Linear Algebra Appl., 2017, 517, 199-206. doi: 10.1016/j.laa.2016.12.016

    CrossRef Google Scholar

    [14] Q. Kong, H. Wu and A. Zettl, Dependence of the $n$th sturm-liouville eigenvalue on the problem, J. Diff. Eqs., 1999, 156(2), 328-354. doi: 10.1006/jdeq.1998.3613

    CrossRef Google Scholar

    [15] Q. Kong, H. Wu and A. Zettl, Geometric Aspects of Sturm-Liouville Problems I, Structures on spaces of boundary conditions, Proc. Roy. Soc. Edinburgh, 2000, 130(3), 561-589 doi: 10.1017/S0308210500000305

    CrossRef Google Scholar

    [16] Q. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Diff. Eqs., 1996, 131(1), 1-19. doi: 10.1006/jdeq.1996.0154

    CrossRef Google Scholar

    [17] M. Möller and B. Zinsou, Self-adjoint higher order differential operators with eigenvalue parameter dependent boundary conditions, Bound. Value Probl., 2015, 2015(1), 79. doi: 10.1186/s13661-015-0341-5

    CrossRef Google Scholar

    [18] M. A. Naimark, Linear differential operators, Ungar, New York, 1968.

    Google Scholar

    [19] J. Sun, Z. Wang and W. Y. Wang, Spectral analysis of linear operators, Beijing Science Press, 2015 (in Chinese).

    Google Scholar

    [20] E. Uǧurlu, Regular third order boundary value problem, Appl. Math. Comput., 2019, 343, 247-257.

    Google Scholar

    [21] A. Wang, J. Sun and A. Zettl, The classification of self-adjoint boundary conditions: Separated, coupled, and mixed, J. Funct. Anal., 2008, 255(6), 1554-1573. doi: 10.1016/j.jfa.2008.05.003

    CrossRef Google Scholar

    [22] A. Wang, J. Sun and A. Zettl, An interesting matrix equation, Miskolc Math. Notes, 2009, 1(1), 107-113.

    Google Scholar

    [23] A. Wang, J. Sun and A. Zettl, Characterrization of domains of self-adjoint ordinary differential operators, J. Diff. Eqs., 2009, 246(4), 1600-1622. doi: 10.1016/j.jde.2008.11.001

    CrossRef Google Scholar

    [24] A. Zettl and J. Sun, Survey article: Self-adjoint ordinary differential operators and their spectrum, Rocky Mt. J. Math., 2015, 45(3), 763-886. doi: 10.1216/RMJ-2015-45-3-763

    CrossRef Google Scholar

    [25] A. Zettl, Sturm-Liouville Theory, Ameracan Mathematical Society, Mathematical Surveys and Monographs, 2005.

    Google Scholar

    [26] A. Zettl, Eigenvalues of regular self-adjoint Sturm-Liouville problems, Communications in Applied Analysis, 2014, 18, 365-400.

    Google Scholar

    [27] A. M. Zhao, M. L. Li and M. A. Han, Basic Theory of Differential Equations, Beijing Science Press, 2018 (in Chinese).

    Google Scholar

Article Metrics

Article views(2376) PDF downloads(512) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint