2019 Volume 9 Issue 6
Article Contents

Guozhong Xiu, Jian Yuan, Bao Shi, Liying Wang. HEREDITARY EFFECTS OF EXPONENTIALLY DAMPED OSCILLATORS WITH PAST HISTORIES[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2212-2223. doi: 10.11948/20180344
Citation: Guozhong Xiu, Jian Yuan, Bao Shi, Liying Wang. HEREDITARY EFFECTS OF EXPONENTIALLY DAMPED OSCILLATORS WITH PAST HISTORIES[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2212-2223. doi: 10.11948/20180344

HEREDITARY EFFECTS OF EXPONENTIALLY DAMPED OSCILLATORS WITH PAST HISTORIES

  • *The authors Guozhong Xiu and Jian Yuan contributed equally to this work
  • Corresponding author: Email address:yuanjianscar@gmail.com(J. Yuan) 
  • Fund Project: The author Jian Yuan was supported by National Natural Science Foundation of China (11802338) and National Science Foundation of Shandong Province (ZR2019QA009, ZR2019MA031)
  • This paper presents hereditary effects of exponentially damped oscillators with past histories. Unlike the classical viscously damped oscillators, the nonviscously damped ones involve damping forces which depend on time-histories of vibrating motions via convolution integrals. As a result, equations of motion of such systems are a set of coupled second-order Volterra integro-differential equations. In this work, initial value problems for the integro-differential equations are revisited. The initial conditions should contain time-histories of vibrating motions. Then, initialization response of exponentially damped oscillators is obtained. It is used to characterize the hereditary effects on the dynamic response. At last, stability of initialization response is proved from the theoretical viewpoint and verified by numerical simulations. This reveals that the hereditary effects gradually recede with increasing of time.
    MSC: 45D05, 45J05
  • 加载中
  • [1] S. Adhikari, Structural Dynamic Analysis with Generalized Damping Models, John Wiley & Sons, Hoboken, 2014.

    Google Scholar

    [2] S. Adhikari, Dynamic response characteristics of a nonviscously damped oscillator, ASME J. Appl. Mech., 2008, 75(1), 148-155.

    Google Scholar

    [3] S. Adhikari and J. Woodhouse, Quantification of non-viscous damping in discrete linear systems, J. Sound Vib., 2003, 260(3), 499-518. doi: 10.1016/S0022-460X(02)00952-5

    CrossRef Google Scholar

    [4] García-Barruetabeña, J., et al., Dynamics of an exponentially damped solid rod: Analytic solution and finite element formulations, Int. J. Solids. Struct., 2012, 49(34), 590-598.

    Google Scholar

    [5] H. Beyer and S. Kempfle, Definition of physically consistent damping laws with fractional derivatives, ZAMM J. Appl. Math. Mech., 1995. 75(8), 623-635. doi: 10.1002/zamm.19950750820

    CrossRef Google Scholar

    [6] B. Du, Y. H. Wei, S. Liang, et al, Estimation of exact initial states of fractional order systems, Nonlinear Dynam., 2016, 86(3), 2061-2070. doi: 10.1007/s11071-016-3015-7

    CrossRef Google Scholar

    [7] M. Fukunaga, On initial value problems of fractional differential equations, I. J. Appl. Math., 2002, 9(2), 219-236.

    Google Scholar

    [8] R. A. Ibrahim, Recent advances in nonlinear passive vibration isolators, J. Sound Vib., 2008, 314(3-5), 371-452. doi: 10.1016/j.jsv.2008.01.014

    CrossRef Google Scholar

    [9] S. Kempfle, I. Schäfer and H. Beyer, Fractional calculus via functional calculus: theory and applications, Nonlinear Dynam., 2002, 29(1-4), 99-127.

    Google Scholar

    [10] L. Li, Y. J. Hu, X. L. Wang, et al, Computation of Eigensolution Derivatives for Nonviscously Damped Systems Using the Algebraic Method, AIAA J., 2012, 50(10), 2282-2284. doi: 10.2514/1.J051664

    CrossRef Google Scholar

    [11] M. Lázaro, Closed-form eigensolutions of nonviscously, nonproportionally damped systems based on continuous damping sensitivity, J. Sound Vib., 2018, 413, 368-382. doi: 10.1016/j.jsv.2017.10.011

    CrossRef Google Scholar

    [12] C. F. Lorenzo, and T. T. Hartley, Initialization of Fractional-Order Operators and Fractional Differential Equations, ASME J. Comput. Nonlinear Dyn., 2008, 3(2), 021101. doi: 10.1115/1.2833585

    CrossRef Google Scholar

    [13] A. Muravyov, Forced vibration responses of a viscoelastic structure, J. Sound Vib., 1998, 218(5), 892-907. doi: 10.1006/jsvi.1998.1819

    CrossRef Google Scholar

    [14] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.

    Google Scholar

    [15] M. D. Paola, A. Pirrotta, and A. J. M.o. M. Valenza, Visco-elastic behavior through fractional calculus: An easier method for best fitting experimental results, Mech. Mater., 2011. 43(12), 799-806. doi: 10.1016/j.mechmat.2011.08.016

    CrossRef Google Scholar

    [16] J. Padovan, S. Chung, and Y. H. Guo, Asymptotic steady state behavior of fractionally damped systems, J. Franklin I., 1987, 324(3), 491-511. doi: 10.1016/0016-0032(87)90057-3

    CrossRef Google Scholar

    [17] J. Padovan and Y. Guo, General response of viscoelastic systems modelled by fractional operators, J. Franklin I., 1988. 325(2), 247-275. doi: 10.1016/0016-0032(88)90086-5

    CrossRef Google Scholar

    [18] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution And Some of Their Applications, Academic Press, San Diego, CA, 1999.

    Google Scholar

    [19] A. Reggio, A. M. De, R. Betti, A state-space methodology to identify modal and physical parameters of non-viscously damped systems, Mech. Syst. Signal Pr., 2013, 41(1-2), 380-395. doi: 10.1016/j.ymssp.2013.07.002

    CrossRef Google Scholar

    [20] Y. A. Rossikhin and M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, ASME Appl. Mech. Rev., 2010, 63(1), 010801. doi: 10.1115/1.4000563

    CrossRef Google Scholar

    [21] Y. A. Rossikhin and M. V. Shitikova, Analysis of rheological equations involving more than one fractional parameters by the use of the simplest mechanical systems based on these equations, Mech. Time-Depend. Mat., 2001. 5(2), 131-175. doi: 10.1023/A:1011476323274

    CrossRef Google Scholar

    [22] M. T. Shaw and W. J. Macknight, Introduction to Polymer Viscoelasticity, John Wiley & Sons, New York, 2005.

    Google Scholar

    [23] I. Schäfer and S. Kempfle, Impulse responses of fractional damped systems. Nonlinear Dynam., 2004, 38(1-4), 61-68. doi: 10.1007/s11071-004-3746-8

    CrossRef Google Scholar

    [24] J. Woodhouse, Linear damping models for structural vibration, J. Sound Vib., 1998, 215(3), 547-569. doi: 10.1006/jsvi.1998.1709

    CrossRef Google Scholar

    [25] C. X. Wu, J. Yuan, B. Shi, Stability of initialization response of fractional oscillators, J. Vibroeng., 2016, 139(1), 4148-4154.

    Google Scholar

    [26] J. Yuan, Y. A. Zhang, J. M. Liu, et al, Mechanical energy and equivalent differential equations of motion for single-degree-of-freedom fractional oscillators, J. Sound Vib., 2017. 397, 192-203. doi: 10.1016/j.jsv.2017.02.050

    CrossRef Google Scholar

    [27] J. Yuan, Y. A. Zhang, J. M. Liu, et al, Sliding mode control of vibration in single-degree-of-freedom fractional oscillators, ASME J. Dyn. Syst., 2017, 139(11), 114503. doi: 10.1115/1.4036665

    CrossRef Google Scholar

    [28] Y. A. Zhang, J. Yuan, J. M. Liu, et al, Lyapunov functions and sliding mode control for two degrees-of-freedom and multidegrees-of-freedom fractional oscillators, ASME J. Vib. Acoust., 2017. 139(1), 011014. doi: 10.1115/1.4034843

    CrossRef Google Scholar

    [29] Y. Zhao, Y. H. Wei, Y. Q. Chen, et al, A new look at the fractional initial value problem: the aberration phenomenon, ASME J. Comput. Nonlinear Dyn., 2018, 13(12), 121004. doi: 10.1115/1.4041621

    CrossRef Google Scholar

    [30] Y. Zhao, Y. H. Wei, J. Shuai, et al, Fitting of the initialization function of fractional order systems, Nonlinear Dynam., 2018, 93(3), 1589-1598. doi: 10.1007/s11071-018-4278-y

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(2250) PDF downloads(465) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint