[1]
|
S. Adhikari, Structural Dynamic Analysis with Generalized Damping Models, John Wiley & Sons, Hoboken, 2014.
Google Scholar
|
[2]
|
S. Adhikari, Dynamic response characteristics of a nonviscously damped oscillator, ASME J. Appl. Mech., 2008, 75(1), 148-155.
Google Scholar
|
[3]
|
S. Adhikari and J. Woodhouse, Quantification of non-viscous damping in discrete linear systems, J. Sound Vib., 2003, 260(3), 499-518. doi: 10.1016/S0022-460X(02)00952-5
CrossRef Google Scholar
|
[4]
|
García-Barruetabeña, J., et al., Dynamics of an exponentially damped solid rod: Analytic solution and finite element formulations, Int. J. Solids. Struct., 2012, 49(34), 590-598.
Google Scholar
|
[5]
|
H. Beyer and S. Kempfle, Definition of physically consistent damping laws with fractional derivatives, ZAMM J. Appl. Math. Mech., 1995. 75(8), 623-635. doi: 10.1002/zamm.19950750820
CrossRef Google Scholar
|
[6]
|
B. Du, Y. H. Wei, S. Liang, et al, Estimation of exact initial states of fractional order systems, Nonlinear Dynam., 2016, 86(3), 2061-2070. doi: 10.1007/s11071-016-3015-7
CrossRef Google Scholar
|
[7]
|
M. Fukunaga, On initial value problems of fractional differential equations, I. J. Appl. Math., 2002, 9(2), 219-236.
Google Scholar
|
[8]
|
R. A. Ibrahim, Recent advances in nonlinear passive vibration isolators, J. Sound Vib., 2008, 314(3-5), 371-452. doi: 10.1016/j.jsv.2008.01.014
CrossRef Google Scholar
|
[9]
|
S. Kempfle, I. Schäfer and H. Beyer, Fractional calculus via functional calculus: theory and applications, Nonlinear Dynam., 2002, 29(1-4), 99-127.
Google Scholar
|
[10]
|
L. Li, Y. J. Hu, X. L. Wang, et al, Computation of Eigensolution Derivatives for Nonviscously Damped Systems Using the Algebraic Method, AIAA J., 2012, 50(10), 2282-2284. doi: 10.2514/1.J051664
CrossRef Google Scholar
|
[11]
|
M. Lázaro, Closed-form eigensolutions of nonviscously, nonproportionally damped systems based on continuous damping sensitivity, J. Sound Vib., 2018, 413, 368-382. doi: 10.1016/j.jsv.2017.10.011
CrossRef Google Scholar
|
[12]
|
C. F. Lorenzo, and T. T. Hartley, Initialization of Fractional-Order Operators and Fractional Differential Equations, ASME J. Comput. Nonlinear Dyn., 2008, 3(2), 021101. doi: 10.1115/1.2833585
CrossRef Google Scholar
|
[13]
|
A. Muravyov, Forced vibration responses of a viscoelastic structure, J. Sound Vib., 1998, 218(5), 892-907. doi: 10.1006/jsvi.1998.1819
CrossRef Google Scholar
|
[14]
|
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.
Google Scholar
|
[15]
|
M. D. Paola, A. Pirrotta, and A. J. M.o. M. Valenza, Visco-elastic behavior through fractional calculus: An easier method for best fitting experimental results, Mech. Mater., 2011. 43(12), 799-806. doi: 10.1016/j.mechmat.2011.08.016
CrossRef Google Scholar
|
[16]
|
J. Padovan, S. Chung, and Y. H. Guo, Asymptotic steady state behavior of fractionally damped systems, J. Franklin I., 1987, 324(3), 491-511. doi: 10.1016/0016-0032(87)90057-3
CrossRef Google Scholar
|
[17]
|
J. Padovan and Y. Guo, General response of viscoelastic systems modelled by fractional operators, J. Franklin I., 1988. 325(2), 247-275. doi: 10.1016/0016-0032(88)90086-5
CrossRef Google Scholar
|
[18]
|
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution And Some of Their Applications, Academic Press, San Diego, CA, 1999.
Google Scholar
|
[19]
|
A. Reggio, A. M. De, R. Betti, A state-space methodology to identify modal and physical parameters of non-viscously damped systems, Mech. Syst. Signal Pr., 2013, 41(1-2), 380-395. doi: 10.1016/j.ymssp.2013.07.002
CrossRef Google Scholar
|
[20]
|
Y. A. Rossikhin and M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, ASME Appl. Mech. Rev., 2010, 63(1), 010801. doi: 10.1115/1.4000563
CrossRef Google Scholar
|
[21]
|
Y. A. Rossikhin and M. V. Shitikova, Analysis of rheological equations involving more than one fractional parameters by the use of the simplest mechanical systems based on these equations, Mech. Time-Depend. Mat., 2001. 5(2), 131-175. doi: 10.1023/A:1011476323274
CrossRef Google Scholar
|
[22]
|
M. T. Shaw and W. J. Macknight, Introduction to Polymer Viscoelasticity, John Wiley & Sons, New York, 2005.
Google Scholar
|
[23]
|
I. Schäfer and S. Kempfle, Impulse responses of fractional damped systems. Nonlinear Dynam., 2004, 38(1-4), 61-68. doi: 10.1007/s11071-004-3746-8
CrossRef Google Scholar
|
[24]
|
J. Woodhouse, Linear damping models for structural vibration, J. Sound Vib., 1998, 215(3), 547-569. doi: 10.1006/jsvi.1998.1709
CrossRef Google Scholar
|
[25]
|
C. X. Wu, J. Yuan, B. Shi, Stability of initialization response of fractional oscillators, J. Vibroeng., 2016, 139(1), 4148-4154.
Google Scholar
|
[26]
|
J. Yuan, Y. A. Zhang, J. M. Liu, et al, Mechanical energy and equivalent differential equations of motion for single-degree-of-freedom fractional oscillators, J. Sound Vib., 2017. 397, 192-203. doi: 10.1016/j.jsv.2017.02.050
CrossRef Google Scholar
|
[27]
|
J. Yuan, Y. A. Zhang, J. M. Liu, et al, Sliding mode control of vibration in single-degree-of-freedom fractional oscillators, ASME J. Dyn. Syst., 2017, 139(11), 114503. doi: 10.1115/1.4036665
CrossRef Google Scholar
|
[28]
|
Y. A. Zhang, J. Yuan, J. M. Liu, et al, Lyapunov functions and sliding mode control for two degrees-of-freedom and multidegrees-of-freedom fractional oscillators, ASME J. Vib. Acoust., 2017. 139(1), 011014. doi: 10.1115/1.4034843
CrossRef Google Scholar
|
[29]
|
Y. Zhao, Y. H. Wei, Y. Q. Chen, et al, A new look at the fractional initial value problem: the aberration phenomenon, ASME J. Comput. Nonlinear Dyn., 2018, 13(12), 121004. doi: 10.1115/1.4041621
CrossRef Google Scholar
|
[30]
|
Y. Zhao, Y. H. Wei, J. Shuai, et al, Fitting of the initialization function of fractional order systems, Nonlinear Dynam., 2018, 93(3), 1589-1598. doi: 10.1007/s11071-018-4278-y
CrossRef Google Scholar
|