[1]
|
B. Aghezzaf, Second order mixed type duality in multiobjective programming problems, J. Math. Anal. Appl., 2003, 285, 97-106. doi: 10.1016/S0022-247X(03)00359-7
CrossRef Google Scholar
|
[2]
|
I. Ahmad and Z. Husain, Second order $\left(F, \alpha, \rho, d\right)$-convexity and duality in multiobjective programming, Inform. Sci., 2006, 176, 3094-3103. doi: 10.1016/j.ins.2005.08.003
CrossRef Google Scholar
|
[3]
|
I. Ahmad, Higher-order duality in nondifferentiable minimax fractional programming involving generalized convexity, J. Inequal. Appl., 2012, 306.
Google Scholar
|
[4]
|
I. Ahmad, Unified higher order duality in nondifferentiable multiobjective programming involving cones, Math. Comp. Model., 2012, 55, 419-425. doi: 10.1016/j.mcm.2011.08.020
CrossRef Google Scholar
|
[5]
|
I. Ahmad, Z. Husain and S. Sharma, Higher-order duality in nondifferentiable multiobjective programming, Numer. Funct. Anal. Opt., 2007, 28, 989-1002. doi: 10.1080/01630560701563800
CrossRef Google Scholar
|
[6]
|
T. Antczak, Sufficient optimality conditions for semi-infinite multiobjective fractional programming under $\left(\Phi, \rho\right)-V$-invexity and generalized $\left(\Phi, \rho\right)-V$-invexity, Filomat, 2016, 30, 3649-3665. doi: 10.2298/FIL1614649A
CrossRef Google Scholar
|
[7]
|
T. Antczak and V. Singh, Optimality and duality for minmax fractional programming with support functions under $B-(p, r)$-Type Ⅰ assumptions, Math. Comp. Model., 2013, 57, 1083-1100. doi: 10.1016/j.mcm.2012.06.028
CrossRef Google Scholar
|
[8]
|
C. R. Bector and S. Chandra, First and second order duality for a class of nondifferentiable fractional programming problems, J. Inf. Optim. Sci., 1986, 7, 335-348.
Google Scholar
|
[9]
|
G. Caristi, M. Ferrara and A. Stefanescu, Semi-infinite multiobjective programming with generalized invexity, Math. Reports, 2010, 12, 217-233.
Google Scholar
|
[10]
|
V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory and Methodology, North-Holland, New York, 1983.
Google Scholar
|
[11]
|
X. Chen, Higher-order symmetric duality in nondifferentiable multiobjective programming problems, J. Math. Anal. Appl., 2004, 290, 423-435. doi: 10.1016/j.jmaa.2003.10.004
CrossRef Google Scholar
|
[12]
|
R. Dubey and S. K. Gupta, On duality for a second-order multiobjective fractional programming problem involving type-I functions, Geo. Math. Journal, 2017. DOI: https://doi.org/10.1515/gmj-2017-0038.
CrossRef Google Scholar
|
[13]
|
M. Ferrara and M. V. Stefanescu, Optimality conditions and duality in multiobjective programming with invexity, Yug. J. Oper. Res., 2008, 8, 153-165.
Google Scholar
|
[14]
|
F. Guerra-Vazquez and J. J. Ruckmann, On proper efficiency in multiobjective semi-infinite optimization, in: H. Xu, K. L. Teo, Y. Zhang (eds.), Optimization and Control Techniques and Applications, Springer Proceedings in Mathematics & Statistics 86, Springer-Verlag Berlin Heidelberg, 2014.
Google Scholar
|
[15]
|
R. Gupta and M. Srivastava, Optimality and duality in multiobjective programming involving support functions, RAIRO-Oper. Res., 2017, 51, 433-446. doi: 10.1051/ro/2016039
CrossRef Google Scholar
|
[16]
|
I. Husain and Z. Jabeen, Second order duality for fractional programming with support functions, Opsearch, 2004, 41, 121-135. doi: 10.1007/BF03398838
CrossRef Google Scholar
|
[17]
|
I. Husain and Z. Jabeen, On fractional programming containing support functions, J. Appl. Math. Comput., 2005, 18, 361-376. doi: 10.1007/BF02936579
CrossRef Google Scholar
|
[18]
|
Z. Husain, I. Ahmad and S. Sharma, Second order duality for minimax fractional programming, Optim. Lett. 2009, 3, 277-286. doi: 10.1007/s11590-008-0107-4
CrossRef Google Scholar
|
[19]
|
M. Hachimi and B. Aghezzaf, Second order duality in multiobjective programming involving generalized type Ⅰ functions, Numer. Func. Annal. Opt., 2005, 25, 725-736. doi: 10.1081/NFA-200045804
CrossRef Google Scholar
|
[20]
|
A. Jayswal, D. Kumar and R. Kumar, Second order duality for nondifferentiable multiobjective programming problem involving $\left(F, \alpha, \rho, d\right)-V-$-type Ⅰ functions, Optim Lett., 2010, 4, 211-226. doi: 10.1007/s11590-009-0159-0
CrossRef Google Scholar
|
[21]
|
R. N. Kaul, S. K. Suneja and M. K. Srivastava, Optimality criteria and duality in multiple objective optimization involving generalized invexity, J. Optimiz. Theory App., 1994, 80, 465-482. doi: 10.1007/BF02207775
CrossRef Google Scholar
|
[22]
|
N. Kanzi and S. Nobakhtian, Optimality conditions for nonsmooth semi-infinite multiobjective programming, Optim. Lett., 2014, 8, 1517-1528. doi: 10.1007/s11590-013-0683-9
CrossRef Google Scholar
|
[23]
|
M. Kapoor, S. K. Suneja and M. B. Grover, Higher order optimality and duality in fractional vector optimization over cones, Tam. J. Math., 2017, 48, 273-287. doi: 10.5556/j.tkjm.48.2017.2311
CrossRef Google Scholar
|
[24]
|
O. L. Mangasarian, Second and higher-order duality in nonlinear programming, J. Math. Anal. Appl., 1975, 51, 607-620. doi: 10.1016/0022-247X(75)90111-0
CrossRef Google Scholar
|
[25]
|
S. K. Mishra and N. G. Rueda, Higher order generalized invexity and duality in non- differentiable mathematical programming, J. Math. Anal. Appl., 2002, 272, 496-506. doi: 10.1016/S0022-247X(02)00170-1
CrossRef Google Scholar
|
[26]
|
S. K. Mishra and N. Rueda, Higher-order generalized invexity and duality in mathematical programming, J. Math. Anal. Appl., 2000, 247, 173-182. doi: 10.1006/jmaa.2000.6842
CrossRef Google Scholar
|
[27]
|
S. K. Mishra and M. Jaiswal, Optimality conditions and duality for nondifferentiable multi- objective semi-infinite programming, Viet. J. Math., 2012, 40, 331-343.
Google Scholar
|
[28]
|
S. K. Mishra, M. Jaiswal and L.T.H. An, Duality for nonsmooth semi-infinite programming problems, Optim. Lett., 2012, 6, 261-271. doi: 10.1007/s11590-010-0240-8
CrossRef Google Scholar
|
[29]
|
B. Mond and T. Weir, Generalized convexity and higher order duality, J. Math. Sci., 1983, 16-18, 74-94.
Google Scholar
|
[30]
|
B. Mond and J. Zhang, Higher order invexity and duality in mathematical programming, in: J.P. Crouzeix, et al. (Eds.), Generalized Convexity, Generalized Monotonicity: Recent Results. Kluwer Academic, 1998, 357-372.
Google Scholar
|
[31]
|
B. Mond and J. Zhang, Duality for multiobjective programming involving second order V-invex functions, in: B. M. Glover and V. Jeyakumar (Eds.), Proceedings of Optimization Mini conference, 1995, 89-100.
Google Scholar
|
[32]
|
S. K. Padhan and C. Nahak, Second-and higher-order generalized invexity and duality in mathematical programming, Int. J. Math. Oper. Res., 2013, 5, 170-182. doi: 10.1504/IJMOR.2013.052459
CrossRef Google Scholar
|
[33]
|
P. Pankaj and B. C. Joshi, Higher order duality in multiobjective fractional programming problem with generalized convexity, Yug. J. Oper. Res., 2017, 27, 249-264. doi: 10.2298/YJOR170121009P
CrossRef Google Scholar
|
[34]
|
R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.
Google Scholar
|
[35]
|
Y. Singh, S. K. Mishra and K. K. Lai, Optimality and duality for nonsmooth semi-infinite multi-objective programming with support functions, Yug. J. Oper. Res., 2017, 27, 205-218. doi: 10.2298/YJOR170121010S
CrossRef Google Scholar
|
[36]
|
M. Srivastava and M. Govil, Second order duality for multiobjective programming involving $\left(F, \rho, \sigma\right)$-type Ⅰ functions, Opsearch, 2000, 37, 316-326. doi: 10.1007/BF03398621
CrossRef Google Scholar
|
[37]
|
S. K. Suneja, M. K. Srivastava and M. Bhatia, Higher order duality in multiobjective fractional programming with support functions, J. Math. Anal. Appl., 2008, 347, 8-17. doi: 10.1016/j.jmaa.2008.05.056
CrossRef Google Scholar
|
[38]
|
S. K. Suneja, S. Sharma and P. Yadav, Generalized higher-order cone-convex functions and higher-order duality in vector optimization, Annal. Oper. Res., 2018, 269, 709-725. doi: 10.1007/s10479-017-2470-y
CrossRef Google Scholar
|
[39]
|
A. K. Tripathy and G. Devi, Second order multi-objective mixed symmetric duality containing square root term with generalized invex function, Opsearch, 2013, 50, 260-281. doi: 10.1007/s12597-012-0103-4
CrossRef Google Scholar
|
[40]
|
R. U. Verma, The sufficient efficiency conditions in semiinfinite multiobjective fractional programming under higher order exponential type hybrid type invexities, Acta Math. Sci., 2015, 35, 1437-1453. doi: 10.1016/S0252-9602(15)30065-5
CrossRef Google Scholar
|
[41]
|
R. U. Verma, Semi-Infinite Fractional Programming, Infosys Science Foundation Series in Mathematical Sciences Springer Nature Singapore Pte Ltd., 2017.
Google Scholar
|
[42]
|
R. U. Verma and G. J. Zalmai, Hanson-Antczak-type $\left(\alpha, \beta, \gamma, \epsilon, \eta, \omega, \rho, \vartheta\right)-V$-sonvexities in semi-infinite multiobjective fractional programs for second-order parametric duality models, Comm. Appl. Non. Anal., 2017, 24, 61-92.
Google Scholar
|
[43]
|
X. Yang, K. L. Teo and X. Yang, Higher order generalized convexity and duality in non-differentiable multiobjective mathematical programming, J. Math. Anal. Appl., 2004, 297, 48-55. doi: 10.1016/j.jmaa.2004.03.036
CrossRef Google Scholar
|
[44]
|
L. Yang, L. Yang and T. Liu, Duality in fractional semi-infinite programming with generalized convexity, Third International Semi-infinite Programming and Computing, Wuxi, China, 4-6 June 2010, IEEE.
Google Scholar
|
[45]
|
G. J. Zalmai, Semiinfinite multiobjective fractional programming problems involving Hadamard directionally differentiable functions. Part Ⅱ: first-order parametric models, Trans. Math. Prog. Appl., 2013, 1, 1-34.
Google Scholar
|
[46]
|
G. J. Zalmai, Hanson-Antczak-type generalized $\left(\alpha, \beta, \gamma, \xi, \eta, \zeta, \rho, \theta\right)-V$-invex functions in semi-infinite multiobjective fractional programming. Part Ⅰ: Sufficient efficiency conditions, Adv. Nonlin. Variation. Inequal., 2013, 16, 91-114.
Google Scholar
|
[47]
|
G. J. Zalmai, Semiinfinite multiobjective fractional programming problems involving Hadamard directionally differentiable functions, part Ⅲ: First-order parameter-free duality models, Trans. Math. Prog. Appl., 2014, 2, 31-65.
Google Scholar
|
[48]
|
G. J. Zalmai and Q. Zhang, Semiinfinite multiobjective fractional programming. Part Ⅰ: Sufficient efficiency conditions, J. App. Anal., 2010, 16, 199-224.
Google Scholar
|
[49]
|
G. J. Zalmai and Q. Zhang, Semiinfinite multiobjective fractional programming. Part Ⅱ: Duality models, J. Appl. Anal., 2011, 17, 1-35. doi: 10.1515/jaa.2011.001
CrossRef Google Scholar
|
[50]
|
G. J. Zalmai and Q. Zhang, Global parametric sufficient efficiency conditions for semiinfinite multiobjective fractional programming problems containing generalized $\left(\alpha, \eta, \rho\right)-V$-invex functions, Acta Math. Appl. Sinica, 2013, 29, 63-78. doi: 10.1007/s10255-013-0204-8
CrossRef Google Scholar
|
[51]
|
G. J. Zalmai and Q. Zhang, Parametric duality models for semiinfinite multiobjective fractional programming problems containing generalized $\left(\alpha, \eta, \rho\right)-V$-invex functions, Acta Appl. Math. Sinica, English Serie, 2013, 29, 225-240. doi: 10.1007/s10255-013-0213-7
CrossRef Google Scholar
|
[52]
|
Z. Zhang, Generalized convexity and higher order duality for mathematical programming problems, Ph.D. thesis, La Trobe University, Australia, 1998.
Google Scholar
|