2020 Volume 10 Issue 6
Article Contents

Tadeusz Antczak, Kalpana Shukla. HIGHER ORDER DUALITY FOR A NEW CLASS OF NONCONVEX SEMI-INFINITE MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH SUPPORT FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2806-2825. doi: 10.11948/20180261
Citation: Tadeusz Antczak, Kalpana Shukla. HIGHER ORDER DUALITY FOR A NEW CLASS OF NONCONVEX SEMI-INFINITE MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH SUPPORT FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2806-2825. doi: 10.11948/20180261

HIGHER ORDER DUALITY FOR A NEW CLASS OF NONCONVEX SEMI-INFINITE MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH SUPPORT FUNCTIONS

  • In the paper, a new class of semi-infinite multiobjective fractional programming problems with support functions in the objective and constraint functions is considered. For such vector optimization problems, higher order dual problems in the sense of Mond-Weir and Schaible are defined. Then, various duality results between the considered multiobjective fractional semi-infinite programming problem and its higher order dual problems mentioned above are established under assumptions that the involved functions are higher order $\left(\Phi, \rho, \sigma^{\alpha}\right)$-type Ⅰ functions. The results established in the paper generalize several similar results previously established in the literature.
    MSC: 90C46, 90C20, 90C26
  • 加载中
  • [1] B. Aghezzaf, Second order mixed type duality in multiobjective programming problems, J. Math. Anal. Appl., 2003, 285, 97-106. doi: 10.1016/S0022-247X(03)00359-7

    CrossRef Google Scholar

    [2] I. Ahmad and Z. Husain, Second order $\left(F, \alpha, \rho, d\right)$-convexity and duality in multiobjective programming, Inform. Sci., 2006, 176, 3094-3103. doi: 10.1016/j.ins.2005.08.003

    CrossRef Google Scholar

    [3] I. Ahmad, Higher-order duality in nondifferentiable minimax fractional programming involving generalized convexity, J. Inequal. Appl., 2012, 306.

    Google Scholar

    [4] I. Ahmad, Unified higher order duality in nondifferentiable multiobjective programming involving cones, Math. Comp. Model., 2012, 55, 419-425. doi: 10.1016/j.mcm.2011.08.020

    CrossRef Google Scholar

    [5] I. Ahmad, Z. Husain and S. Sharma, Higher-order duality in nondifferentiable multiobjective programming, Numer. Funct. Anal. Opt., 2007, 28, 989-1002. doi: 10.1080/01630560701563800

    CrossRef Google Scholar

    [6] T. Antczak, Sufficient optimality conditions for semi-infinite multiobjective fractional programming under $\left(\Phi, \rho\right)-V$-invexity and generalized $\left(\Phi, \rho\right)-V$-invexity, Filomat, 2016, 30, 3649-3665. doi: 10.2298/FIL1614649A

    CrossRef Google Scholar

    [7] T. Antczak and V. Singh, Optimality and duality for minmax fractional programming with support functions under $B-(p, r)$-Type Ⅰ assumptions, Math. Comp. Model., 2013, 57, 1083-1100. doi: 10.1016/j.mcm.2012.06.028

    CrossRef Google Scholar

    [8] C. R. Bector and S. Chandra, First and second order duality for a class of nondifferentiable fractional programming problems, J. Inf. Optim. Sci., 1986, 7, 335-348.

    Google Scholar

    [9] G. Caristi, M. Ferrara and A. Stefanescu, Semi-infinite multiobjective programming with generalized invexity, Math. Reports, 2010, 12, 217-233.

    Google Scholar

    [10] V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory and Methodology, North-Holland, New York, 1983.

    Google Scholar

    [11] X. Chen, Higher-order symmetric duality in nondifferentiable multiobjective programming problems, J. Math. Anal. Appl., 2004, 290, 423-435. doi: 10.1016/j.jmaa.2003.10.004

    CrossRef Google Scholar

    [12] R. Dubey and S. K. Gupta, On duality for a second-order multiobjective fractional programming problem involving type-I functions, Geo. Math. Journal, 2017. DOI: https://doi.org/10.1515/gmj-2017-0038.

    CrossRef Google Scholar

    [13] M. Ferrara and M. V. Stefanescu, Optimality conditions and duality in multiobjective programming with invexity, Yug. J. Oper. Res., 2008, 8, 153-165.

    Google Scholar

    [14] F. Guerra-Vazquez and J. J. Ruckmann, On proper efficiency in multiobjective semi-infinite optimization, in: H. Xu, K. L. Teo, Y. Zhang (eds.), Optimization and Control Techniques and Applications, Springer Proceedings in Mathematics & Statistics 86, Springer-Verlag Berlin Heidelberg, 2014.

    Google Scholar

    [15] R. Gupta and M. Srivastava, Optimality and duality in multiobjective programming involving support functions, RAIRO-Oper. Res., 2017, 51, 433-446. doi: 10.1051/ro/2016039

    CrossRef Google Scholar

    [16] I. Husain and Z. Jabeen, Second order duality for fractional programming with support functions, Opsearch, 2004, 41, 121-135. doi: 10.1007/BF03398838

    CrossRef Google Scholar

    [17] I. Husain and Z. Jabeen, On fractional programming containing support functions, J. Appl. Math. Comput., 2005, 18, 361-376. doi: 10.1007/BF02936579

    CrossRef Google Scholar

    [18] Z. Husain, I. Ahmad and S. Sharma, Second order duality for minimax fractional programming, Optim. Lett. 2009, 3, 277-286. doi: 10.1007/s11590-008-0107-4

    CrossRef Google Scholar

    [19] M. Hachimi and B. Aghezzaf, Second order duality in multiobjective programming involving generalized type Ⅰ functions, Numer. Func. Annal. Opt., 2005, 25, 725-736. doi: 10.1081/NFA-200045804

    CrossRef Google Scholar

    [20] A. Jayswal, D. Kumar and R. Kumar, Second order duality for nondifferentiable multiobjective programming problem involving $\left(F, \alpha, \rho, d\right)-V-$-type Ⅰ functions, Optim Lett., 2010, 4, 211-226. doi: 10.1007/s11590-009-0159-0

    CrossRef Google Scholar

    [21] R. N. Kaul, S. K. Suneja and M. K. Srivastava, Optimality criteria and duality in multiple objective optimization involving generalized invexity, J. Optimiz. Theory App., 1994, 80, 465-482. doi: 10.1007/BF02207775

    CrossRef Google Scholar

    [22] N. Kanzi and S. Nobakhtian, Optimality conditions for nonsmooth semi-infinite multiobjective programming, Optim. Lett., 2014, 8, 1517-1528. doi: 10.1007/s11590-013-0683-9

    CrossRef Google Scholar

    [23] M. Kapoor, S. K. Suneja and M. B. Grover, Higher order optimality and duality in fractional vector optimization over cones, Tam. J. Math., 2017, 48, 273-287. doi: 10.5556/j.tkjm.48.2017.2311

    CrossRef Google Scholar

    [24] O. L. Mangasarian, Second and higher-order duality in nonlinear programming, J. Math. Anal. Appl., 1975, 51, 607-620. doi: 10.1016/0022-247X(75)90111-0

    CrossRef Google Scholar

    [25] S. K. Mishra and N. G. Rueda, Higher order generalized invexity and duality in non- differentiable mathematical programming, J. Math. Anal. Appl., 2002, 272, 496-506. doi: 10.1016/S0022-247X(02)00170-1

    CrossRef Google Scholar

    [26] S. K. Mishra and N. Rueda, Higher-order generalized invexity and duality in mathematical programming, J. Math. Anal. Appl., 2000, 247, 173-182. doi: 10.1006/jmaa.2000.6842

    CrossRef Google Scholar

    [27] S. K. Mishra and M. Jaiswal, Optimality conditions and duality for nondifferentiable multi- objective semi-infinite programming, Viet. J. Math., 2012, 40, 331-343.

    Google Scholar

    [28] S. K. Mishra, M. Jaiswal and L.T.H. An, Duality for nonsmooth semi-infinite programming problems, Optim. Lett., 2012, 6, 261-271. doi: 10.1007/s11590-010-0240-8

    CrossRef Google Scholar

    [29] B. Mond and T. Weir, Generalized convexity and higher order duality, J. Math. Sci., 1983, 16-18, 74-94.

    Google Scholar

    [30] B. Mond and J. Zhang, Higher order invexity and duality in mathematical programming, in: J.P. Crouzeix, et al. (Eds.), Generalized Convexity, Generalized Monotonicity: Recent Results. Kluwer Academic, 1998, 357-372.

    Google Scholar

    [31] B. Mond and J. Zhang, Duality for multiobjective programming involving second order V-invex functions, in: B. M. Glover and V. Jeyakumar (Eds.), Proceedings of Optimization Mini conference, 1995, 89-100.

    Google Scholar

    [32] S. K. Padhan and C. Nahak, Second-and higher-order generalized invexity and duality in mathematical programming, Int. J. Math. Oper. Res., 2013, 5, 170-182. doi: 10.1504/IJMOR.2013.052459

    CrossRef Google Scholar

    [33] P. Pankaj and B. C. Joshi, Higher order duality in multiobjective fractional programming problem with generalized convexity, Yug. J. Oper. Res., 2017, 27, 249-264. doi: 10.2298/YJOR170121009P

    CrossRef Google Scholar

    [34] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

    Google Scholar

    [35] Y. Singh, S. K. Mishra and K. K. Lai, Optimality and duality for nonsmooth semi-infinite multi-objective programming with support functions, Yug. J. Oper. Res., 2017, 27, 205-218. doi: 10.2298/YJOR170121010S

    CrossRef Google Scholar

    [36] M. Srivastava and M. Govil, Second order duality for multiobjective programming involving $\left(F, \rho, \sigma\right)$-type Ⅰ functions, Opsearch, 2000, 37, 316-326. doi: 10.1007/BF03398621

    CrossRef Google Scholar

    [37] S. K. Suneja, M. K. Srivastava and M. Bhatia, Higher order duality in multiobjective fractional programming with support functions, J. Math. Anal. Appl., 2008, 347, 8-17. doi: 10.1016/j.jmaa.2008.05.056

    CrossRef Google Scholar

    [38] S. K. Suneja, S. Sharma and P. Yadav, Generalized higher-order cone-convex functions and higher-order duality in vector optimization, Annal. Oper. Res., 2018, 269, 709-725. doi: 10.1007/s10479-017-2470-y

    CrossRef Google Scholar

    [39] A. K. Tripathy and G. Devi, Second order multi-objective mixed symmetric duality containing square root term with generalized invex function, Opsearch, 2013, 50, 260-281. doi: 10.1007/s12597-012-0103-4

    CrossRef Google Scholar

    [40] R. U. Verma, The sufficient efficiency conditions in semiinfinite multiobjective fractional programming under higher order exponential type hybrid type invexities, Acta Math. Sci., 2015, 35, 1437-1453. doi: 10.1016/S0252-9602(15)30065-5

    CrossRef Google Scholar

    [41] R. U. Verma, Semi-Infinite Fractional Programming, Infosys Science Foundation Series in Mathematical Sciences Springer Nature Singapore Pte Ltd., 2017.

    Google Scholar

    [42] R. U. Verma and G. J. Zalmai, Hanson-Antczak-type $\left(\alpha, \beta, \gamma, \epsilon, \eta, \omega, \rho, \vartheta\right)-V$-sonvexities in semi-infinite multiobjective fractional programs for second-order parametric duality models, Comm. Appl. Non. Anal., 2017, 24, 61-92.

    Google Scholar

    [43] X. Yang, K. L. Teo and X. Yang, Higher order generalized convexity and duality in non-differentiable multiobjective mathematical programming, J. Math. Anal. Appl., 2004, 297, 48-55. doi: 10.1016/j.jmaa.2004.03.036

    CrossRef Google Scholar

    [44] L. Yang, L. Yang and T. Liu, Duality in fractional semi-infinite programming with generalized convexity, Third International Semi-infinite Programming and Computing, Wuxi, China, 4-6 June 2010, IEEE.

    Google Scholar

    [45] G. J. Zalmai, Semiinfinite multiobjective fractional programming problems involving Hadamard directionally differentiable functions. Part Ⅱ: first-order parametric models, Trans. Math. Prog. Appl., 2013, 1, 1-34.

    Google Scholar

    [46] G. J. Zalmai, Hanson-Antczak-type generalized $\left(\alpha, \beta, \gamma, \xi, \eta, \zeta, \rho, \theta\right)-V$-invex functions in semi-infinite multiobjective fractional programming. Part Ⅰ: Sufficient efficiency conditions, Adv. Nonlin. Variation. Inequal., 2013, 16, 91-114.

    Google Scholar

    [47] G. J. Zalmai, Semiinfinite multiobjective fractional programming problems involving Hadamard directionally differentiable functions, part Ⅲ: First-order parameter-free duality models, Trans. Math. Prog. Appl., 2014, 2, 31-65.

    Google Scholar

    [48] G. J. Zalmai and Q. Zhang, Semiinfinite multiobjective fractional programming. Part Ⅰ: Sufficient efficiency conditions, J. App. Anal., 2010, 16, 199-224.

    Google Scholar

    [49] G. J. Zalmai and Q. Zhang, Semiinfinite multiobjective fractional programming. Part Ⅱ: Duality models, J. Appl. Anal., 2011, 17, 1-35. doi: 10.1515/jaa.2011.001

    CrossRef Google Scholar

    [50] G. J. Zalmai and Q. Zhang, Global parametric sufficient efficiency conditions for semiinfinite multiobjective fractional programming problems containing generalized $\left(\alpha, \eta, \rho\right)-V$-invex functions, Acta Math. Appl. Sinica, 2013, 29, 63-78. doi: 10.1007/s10255-013-0204-8

    CrossRef Google Scholar

    [51] G. J. Zalmai and Q. Zhang, Parametric duality models for semiinfinite multiobjective fractional programming problems containing generalized $\left(\alpha, \eta, \rho\right)-V$-invex functions, Acta Appl. Math. Sinica, English Serie, 2013, 29, 225-240. doi: 10.1007/s10255-013-0213-7

    CrossRef Google Scholar

    [52] Z. Zhang, Generalized convexity and higher order duality for mathematical programming problems, Ph.D. thesis, La Trobe University, Australia, 1998.

    Google Scholar

Article Metrics

Article views(3103) PDF downloads(449) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint