[1]
|
C. Bandle, C. Coffman and M. Marcus, Nonlinear elliptic problems in annular domains, J. Differential Equations, 1987, 69(3), 322-345. doi: 10.1016/0022-0396(87)90123-9
CrossRef Google Scholar
|
[2]
|
C. Bandle and M. Kwong, Semilinear elliptic problems in annular domains, Z. Angew. Math. Phys., 1989, 40(2), 245-257. doi: 10.1007/BF00945001
CrossRef Google Scholar
|
[3]
|
H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York, 2011.
Google Scholar
|
[4]
|
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 1983, 36(4), 437-477. doi: 10.1002/cpa.3160360405
CrossRef Google Scholar
|
[5]
|
C. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differential Equations, 1984, 54(3), 429-437. doi: 10.1016/0022-0396(84)90153-0
CrossRef Google Scholar
|
[6]
|
R. Dalmasso, Elliptic equations of order $2m$ in annular domains, Trans. Amer. Math. Soc., 1995, 347(9), 3575-3585.
Google Scholar
|
[7]
|
D. De Figueiredo, M. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Differential Integral Equations, 2004, 17(1-2), 119-126.
Google Scholar
|
[8]
|
F. De Marchis, I. Ianni and F. Pacella, A Morse index formula for radial solutions of Lane-Emden problems, Adv. Math., 2017, 322, 682-737. doi: 10.1016/j.aim.2017.10.026
CrossRef Google Scholar
|
[9]
|
X. Dong and Y. Wei, Existence of radial solutions for nonlinear elliptic equations with gradient terms in annular domains, Nonlinear Anal., 2019, 187, 93-109. doi: 10.1016/j.na.2019.03.024
CrossRef Google Scholar
|
[10]
|
G. Ercole and A. Zumpano, Positive solutions for the $p$-Laplacian in annuli, Proc. Roy. Soc. Edinburgh Sect. A, 2002, 132(3), 595-610. doi: 10.1017/S0308210500001797
CrossRef Google Scholar
|
[11]
|
X. Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations, 1987, 70(1), 69-92. doi: 10.1016/0022-0396(87)90169-0
CrossRef Google Scholar
|
[12]
|
L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations, 2004, 21(3), 287-318.
Google Scholar
|
[13]
|
R. Kajikiya, Multiple positive solutions of the Emden-Fowler equation in hollow thin symmetric domains, Calc. Var. Partial Differential Equations, 2015, 52(3-4), 681-704. doi: 10.1007/s00526-014-0729-6
CrossRef Google Scholar
|
[14]
|
Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differential Equations, 1990, 83(2), 348-367. doi: 10.1016/0022-0396(90)90062-T
CrossRef Google Scholar
|
[15]
|
S. Lin, On non-radially symmetric bifurcation in the annulus, J. Differential Equations, 1989, 80(2), 251-279. doi: 10.1016/0022-0396(89)90084-3
CrossRef Google Scholar
|
[16]
|
S. Lin, Existence of positive nonradial solutions for nonlinear elliptic equations in annular domains, Trans. Amer. Math. Soc., 1992, 332(2), 775-791. doi: 10.1090/S0002-9947-1992-1055571-1
CrossRef Google Scholar
|
[17]
|
W. Ni, Uniqueness of solutions of nonlinear Dirichlet problems, J. Differential Equations, 1983, 50(2), 289-304. doi: 10.1016/0022-0396(83)90079-7
CrossRef Google Scholar
|
[18]
|
W. Ni and R. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u, r)=0$, Comm. Pure Appl. Math., 1985, 38(1), 67-108. doi: 10.1002/cpa.3160380105
CrossRef Google Scholar
|
[19]
|
F. Pacella and D. Salazar, Asymptotic behaviour of sign changing radial solutions of Lane Emden problems in the annulus, Discrete Contin. Dyn. Syst. Ser. S, 2014, 7(4), 793-805.
Google Scholar
|
[20]
|
S. Pohozaev, Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR, 1965, 165, 36-39.
Google Scholar
|
[21]
|
C. Stuart and H. Zhou, Applying the Mountain pass theorem to an asymptotically linear elliptic equation on $\mathbb{R}^N$, Comm. Partial Differential Equations, 1999, 24(9-10), 1731-1758. doi: 10.1080/03605309908821481
CrossRef Google Scholar
|
[22]
|
G. Sciammetta and E. Tornatore, Two non-zero solutions for Sturm-Liouville equations with mixed boundary conditions, Nonlinear Anal., 2019, 47, 324-331. doi: 10.1016/j.nonrwa.2018.11.002
CrossRef Google Scholar
|
[23]
|
W. Walter, Ordinary differential equations, Springer-Verlag, New York, 1998.
Google Scholar
|
[24]
|
H. Wang, On the structure of positive radial solutions for quasilinear equations in annular domains, Adv. Differential Equations, 2003, 8(1), 111-128.
Google Scholar
|
[25]
|
H. Wang, Positive radial solutions for quasilinear equations in the annulus, Discrete Contin. Dyn. Syst., 2005, 2005(Special), 878-885.
Google Scholar
|
[26]
|
Z. Wang and M. Willem, Existence of many positive solutions of semilinear elliptic equations on an annulus, Proc. Amer. Math. Soc., 1999, 127(6), 1711-1714. doi: 10.1090/S0002-9939-99-04708-5
CrossRef Google Scholar
|
[27]
|
Y. Wei, Multiplicity results for some fourth-order elliptic equations, J. Math. Anal. Appl., 2012, 385(2), 797-807, . doi: 10.1016/j.jmaa.2011.07.011
CrossRef Google Scholar
|
[28]
|
Y. Wei, Existence and uniqueness of periodic solutions for second order differential equations, J. Funct. Spaces, 2014. DOI: 10.1155/2014/246258.
CrossRef Google Scholar
|
[29]
|
Y. Wei and X. Su, On a class of non-local elliptic equations with asymptotically linear term, Discrete Contin. Dyn. Syst., 2018, 38(12), 6287-6304. doi: 10.3934/dcds.2018154
CrossRef Google Scholar
|
[30]
|
S. Yadava, Uniqueness of positive radial solutions of the Dirichlet problems $-\Delta u=u^p\pm u^q$ in an annulus, J. Differential Equations, 1997, 139(1), 194-217. doi: 10.1006/jdeq.1997.3283
CrossRef Google Scholar
|