2020 Volume 10 Issue 6
Article Contents

Jian Tian, Yuanhong Wei. RADIAL SOLUTION OF ASYMPTOTICALLY LINEAR ELLIPTIC EQUATION WITH MIXED BOUNDARY VALUE IN ANNULAR DOMAIN[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2787-2805. doi: 10.11948/20200306
Citation: Jian Tian, Yuanhong Wei. RADIAL SOLUTION OF ASYMPTOTICALLY LINEAR ELLIPTIC EQUATION WITH MIXED BOUNDARY VALUE IN ANNULAR DOMAIN[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2787-2805. doi: 10.11948/20200306

RADIAL SOLUTION OF ASYMPTOTICALLY LINEAR ELLIPTIC EQUATION WITH MIXED BOUNDARY VALUE IN ANNULAR DOMAIN

  • Corresponding author: Email: weiyuanhong@jlu.edu.cn(Y. Wei)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11871242), and Natural Science Foundation of Jilin Province of China (No. 20200201248JC)
  • In this paper, we study nonlinear elliptic equation with mixed boundary value condition in annular domain. It is assumed that the nonlinearity is asymptotically linear and depends on the derivative term. Some results on the existence of solution are established by nonlinear analysis methods.
    MSC: 35J91, 35J25, 35A01
  • 加载中
  • [1] C. Bandle, C. Coffman and M. Marcus, Nonlinear elliptic problems in annular domains, J. Differential Equations, 1987, 69(3), 322-345. doi: 10.1016/0022-0396(87)90123-9

    CrossRef Google Scholar

    [2] C. Bandle and M. Kwong, Semilinear elliptic problems in annular domains, Z. Angew. Math. Phys., 1989, 40(2), 245-257. doi: 10.1007/BF00945001

    CrossRef Google Scholar

    [3] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York, 2011.

    Google Scholar

    [4] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 1983, 36(4), 437-477. doi: 10.1002/cpa.3160360405

    CrossRef Google Scholar

    [5] C. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differential Equations, 1984, 54(3), 429-437. doi: 10.1016/0022-0396(84)90153-0

    CrossRef Google Scholar

    [6] R. Dalmasso, Elliptic equations of order $2m$ in annular domains, Trans. Amer. Math. Soc., 1995, 347(9), 3575-3585.

    Google Scholar

    [7] D. De Figueiredo, M. Girardi and M. Matzeu, Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques, Differential Integral Equations, 2004, 17(1-2), 119-126.

    Google Scholar

    [8] F. De Marchis, I. Ianni and F. Pacella, A Morse index formula for radial solutions of Lane-Emden problems, Adv. Math., 2017, 322, 682-737. doi: 10.1016/j.aim.2017.10.026

    CrossRef Google Scholar

    [9] X. Dong and Y. Wei, Existence of radial solutions for nonlinear elliptic equations with gradient terms in annular domains, Nonlinear Anal., 2019, 187, 93-109. doi: 10.1016/j.na.2019.03.024

    CrossRef Google Scholar

    [10] G. Ercole and A. Zumpano, Positive solutions for the $p$-Laplacian in annuli, Proc. Roy. Soc. Edinburgh Sect. A, 2002, 132(3), 595-610. doi: 10.1017/S0308210500001797

    CrossRef Google Scholar

    [11] X. Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations, 1987, 70(1), 69-92. doi: 10.1016/0022-0396(87)90169-0

    CrossRef Google Scholar

    [12] L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations, 2004, 21(3), 287-318.

    Google Scholar

    [13] R. Kajikiya, Multiple positive solutions of the Emden-Fowler equation in hollow thin symmetric domains, Calc. Var. Partial Differential Equations, 2015, 52(3-4), 681-704. doi: 10.1007/s00526-014-0729-6

    CrossRef Google Scholar

    [14] Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differential Equations, 1990, 83(2), 348-367. doi: 10.1016/0022-0396(90)90062-T

    CrossRef Google Scholar

    [15] S. Lin, On non-radially symmetric bifurcation in the annulus, J. Differential Equations, 1989, 80(2), 251-279. doi: 10.1016/0022-0396(89)90084-3

    CrossRef Google Scholar

    [16] S. Lin, Existence of positive nonradial solutions for nonlinear elliptic equations in annular domains, Trans. Amer. Math. Soc., 1992, 332(2), 775-791. doi: 10.1090/S0002-9947-1992-1055571-1

    CrossRef Google Scholar

    [17] W. Ni, Uniqueness of solutions of nonlinear Dirichlet problems, J. Differential Equations, 1983, 50(2), 289-304. doi: 10.1016/0022-0396(83)90079-7

    CrossRef Google Scholar

    [18] W. Ni and R. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u, r)=0$, Comm. Pure Appl. Math., 1985, 38(1), 67-108. doi: 10.1002/cpa.3160380105

    CrossRef Google Scholar

    [19] F. Pacella and D. Salazar, Asymptotic behaviour of sign changing radial solutions of Lane Emden problems in the annulus, Discrete Contin. Dyn. Syst. Ser. S, 2014, 7(4), 793-805.

    Google Scholar

    [20] S. Pohozaev, Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR, 1965, 165, 36-39.

    Google Scholar

    [21] C. Stuart and H. Zhou, Applying the Mountain pass theorem to an asymptotically linear elliptic equation on $\mathbb{R}^N$, Comm. Partial Differential Equations, 1999, 24(9-10), 1731-1758. doi: 10.1080/03605309908821481

    CrossRef Google Scholar

    [22] G. Sciammetta and E. Tornatore, Two non-zero solutions for Sturm-Liouville equations with mixed boundary conditions, Nonlinear Anal., 2019, 47, 324-331. doi: 10.1016/j.nonrwa.2018.11.002

    CrossRef Google Scholar

    [23] W. Walter, Ordinary differential equations, Springer-Verlag, New York, 1998.

    Google Scholar

    [24] H. Wang, On the structure of positive radial solutions for quasilinear equations in annular domains, Adv. Differential Equations, 2003, 8(1), 111-128.

    Google Scholar

    [25] H. Wang, Positive radial solutions for quasilinear equations in the annulus, Discrete Contin. Dyn. Syst., 2005, 2005(Special), 878-885.

    Google Scholar

    [26] Z. Wang and M. Willem, Existence of many positive solutions of semilinear elliptic equations on an annulus, Proc. Amer. Math. Soc., 1999, 127(6), 1711-1714. doi: 10.1090/S0002-9939-99-04708-5

    CrossRef Google Scholar

    [27] Y. Wei, Multiplicity results for some fourth-order elliptic equations, J. Math. Anal. Appl., 2012, 385(2), 797-807, . doi: 10.1016/j.jmaa.2011.07.011

    CrossRef Google Scholar

    [28] Y. Wei, Existence and uniqueness of periodic solutions for second order differential equations, J. Funct. Spaces, 2014. DOI: 10.1155/2014/246258.

    CrossRef Google Scholar

    [29] Y. Wei and X. Su, On a class of non-local elliptic equations with asymptotically linear term, Discrete Contin. Dyn. Syst., 2018, 38(12), 6287-6304. doi: 10.3934/dcds.2018154

    CrossRef Google Scholar

    [30] S. Yadava, Uniqueness of positive radial solutions of the Dirichlet problems $-\Delta u=u^p\pm u^q$ in an annulus, J. Differential Equations, 1997, 139(1), 194-217. doi: 10.1006/jdeq.1997.3283

    CrossRef Google Scholar

Article Metrics

Article views(2709) PDF downloads(430) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint