2020 Volume 10 Issue 6
Article Contents

Ronghua Wang, Beiqing Gu, Xiaoling Xu. STATISTICAL ANALYSIS OF PROGRESSIVE STRESS ACCELERATED LIFE TEST FOR THE PRODUCT OF TWO-PARAMETER LAPLACE BS FATIGUE LIFE DISTRIBUTION UNDER INVERSE POWER LAW MODEL[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2767-2786. doi: 10.11948/20200286
Citation: Ronghua Wang, Beiqing Gu, Xiaoling Xu. STATISTICAL ANALYSIS OF PROGRESSIVE STRESS ACCELERATED LIFE TEST FOR THE PRODUCT OF TWO-PARAMETER LAPLACE BS FATIGUE LIFE DISTRIBUTION UNDER INVERSE POWER LAW MODEL[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2767-2786. doi: 10.11948/20200286

STATISTICAL ANALYSIS OF PROGRESSIVE STRESS ACCELERATED LIFE TEST FOR THE PRODUCT OF TWO-PARAMETER LAPLACE BS FATIGUE LIFE DISTRIBUTION UNDER INVERSE POWER LAW MODEL

  • Corresponding author: Email: gubeiqing@suibe.edu.cn(B. Gu) 
  • Fund Project: Wang's work was supported by National Natural Science Foundation of China (11671264)
  • Based on the product of two-parameter Laplace Birnbaum-Saunders fatigue life distribution, its failure distribution mode is theoretically derived under the progressive stress accelerated life test with inverse power law model, and then three-parameter generalized Laplace Birnbaum-Saunders fatigue life distribution is introduced. The basic properties of three-parameter generalized Laplace Birnbaum-Saunders fatigue life distribution are analyzed, and the image characteristics of its density function, failure rate function and average failure rate function are investigated. Meanwhile, the point estimate method is given for three parameters, and then the point estimates of parameters are obtained for the product of two-parameter Laplace Birnbaum-Saunders fatigue life distribution under the progressive stress accelerated life test with inverse power law model. In addition, the practical example and simulation examples are illustrated to show the feasibility of the proposed method.
    MSC: 62N05
  • 加载中
  • [1] M. Barros, G. A. Paula and V. Leiva, An R implementation for generalized Birnbaum-Saunders distributions, Comput. Stat. Data An., 2009, 53(4), 1511-1528. doi: 10.1016/j.csda.2008.11.005

    CrossRef Google Scholar

    [2] Z. W. Birnbaum and S. C. Saunder, A new family of life distribution, J. Appl. Probab., 1969, 6(2), 319-327. doi: 10.2307/3212003

    CrossRef Google Scholar

    [3] Z. W. Birnbaum and S. C. Saunder, Estimation for a family of life distribution with applications to fatigue, J. Appl. Probab., 1969, 6(2), 328-347. doi: 10.2307/3212004

    CrossRef Google Scholar

    [4] D. S Chang and L. C. Tang, Reliability bounds and critical time for the Birnbaum-Saunders distribution, IEEE Trans. Reliab., 1993, 42(3), 464-469. doi: 10.1109/24.257832

    CrossRef Google Scholar

    [5] A. F. Desmond, Stochastic models of failure in random environments, Canadian Journal of Statistics, 1985, 13(3), 171-183. doi: 10.2307/3315148

    CrossRef Google Scholar

    [6] A. F. Desmond, On the relationship between two fatigue-life models, IEEE Trans. Reliab., 1986, 35(2), 167-169. doi: 10.1109/TR.1986.4335393

    CrossRef Google Scholar

    [7] D. J. Dupuis and J. E. Mills, Robust estimation of the Birnbaum-Saunders distribution, IEEE Trans. Reliab., 1998, 47(1), 88-95.

    Google Scholar

    [8] M. Engelhardt, L. J. Bain and F. T. Wright, Inferences on the parameters of the Birnbaum Saunders fatigue life distribution based on maximum likelihood estimation, Technometrics, 1981, 23(3), 251-256. doi: 10.2307/1267788

    CrossRef Google Scholar

    [9] J. A. Garcia and V. L. Sanchez, A new family of life distributions based on the elliptically contoured distributions, J. Stat. Plan. Infer., 2005, 128(2), 445-457.

    Google Scholar

    [10] D. Kundu, N. Kannan and N. Balakrishnan, On the hazard function of Birnbaum–Saunders distribution and associated inference, Comput. Stat. Data An., 2008, 52(5), 2692-2702. doi: 10.1016/j.csda.2007.09.021

    CrossRef Google Scholar

    [11] W. Nelson, Accelerated life testing step-stress models and data analysis, IEEE Trans. Reliab., 1980, 29(2), 103-108.

    Google Scholar

    [12] W. Nelson, Accelerated testing: statistical models, test plans, and data analysis, John Wiley & Sons Inc, 2004, 507-509.

    Google Scholar

    [13] H. K. T. Ng, D. Kundu and N. Balakrishnan, Modified moment estimation for the two-parameter Birnbaum-Saunders distribution, Comput. Stat. Data An., 2003, 43(3), 283-298.

    Google Scholar

    [14] C. Z. Niu, X. Guo, W. L. Xu, et al., Comparison of several Birnbaum-Saunders distributions, J. Stat. Comput. Sim., 2014, 84(12), 2721-2733. doi: 10.1080/00949655.2014.881814

    CrossRef Google Scholar

    [15] W. J. Owen and W. J. Padgett, Acceleration models for system strength based on Birnbaum-Saunders distribution, Lifetime Data Anal., 1999, 5(2), 133-147. doi: 10.1023/A:1009649428243

    CrossRef Google Scholar

    [16] W. J. Owen and W. J. Padgett, A Birnbaum-Saunders accelerated life model, IEEE Trans. Reliab., 2000, 49(2), 224-229. doi: 10.1109/24.877342

    CrossRef Google Scholar

    [17] W. J. Owen and W. J. Padgett, Power-law accelerated Birnbaum-Saunders life models, Int. J. Reliab., Qual. & Safety Eng., 2000, 7(7), 1-15.

    Google Scholar

    [18] J. R. Rieck, Parametric estimation for the Birnbaum-Saunders distribution based on symmetrically censored samples, Commun. Stat-Theor. Methods, 1995, 24(7), 1721-1736. doi: 10.1080/03610929508831581

    CrossRef Google Scholar

    [19] J. R. Rieck and J. R. Nedelman, A log-linear model for the Birnbaum Saunders distribution, Technometrics, 1991, 33(1), 51-60.

    Google Scholar

    [20] A. Sanhueza, V. Leiva and N. Balakrishnan, The Generalized Birnbaum-Saunders Distribution and Its Theory, Methodology and Application, Commun. Stat-Theor Methods, 2008, 37(5), 645-670. doi: 10.1080/03610920701541174

    CrossRef Google Scholar

    [21] Z. Sun, Interval estimation of scale parameter for Birnbaum-Saunders fatigue life distribution, Acta Armamentarli, 2009, 30(11), 1558-1561.

    Google Scholar

    [22] F. Vilca, L. Santana, V. Leiva and N. Balakrishnan, Estimation of extreme percentiles in Birnbaum-Saunders distributions, Comput. Stat. Data An., 2011, 55(4), 1665-1678. doi: 10.1016/j.csda.2010.10.023

    CrossRef Google Scholar

    [23] B. X. Wang, Generalized interval estimation for the Birnbaum-Saunders distribution, Comput. Stat. Data An., 2012, 56(12), 4320-4326. doi: 10.1016/j.csda.2012.03.023

    CrossRef Google Scholar

    [24] R. H. Wang, B. Q. Gu and X. L. Xu, Fitting test of two-parameter BS fatigue life distribution and approximate interval estimation of environmental factor, Journal of Shanghai Normal University(Natural Sciences), 2019, 48(4), 339-346.

    Google Scholar

    [25] X. Xu, R. Wang and B. Gu, Probability and mathematical statistics, Post and Telecom Press, 2014, 174-178.

    Google Scholar

    [26] X. Xu, R. Wang and B. Gu, Statistical analysis of two-parameter Birnbaum-Saunders fatigue life distribution under full sample, Journal of Zhejiang University(Science Edition), 2017, 44(6), 692-704.

    Google Scholar

    [27] D. Yang and H. Che, The probabilistic method research on the fatigue life distribution for concrete under repeated loading, Journal of the China Railway Society, 1990, 12(4), 56-65.

    Google Scholar

    [28] X. Zhu and N. Balakrishnan, Birnbaum-Saunders distribution based on Laplace kernel and some properties and inferential issues, Statistics and Probability Letters, 2015, 101, 1-10. doi: 10.1016/j.spl.2015.02.007

    CrossRef Google Scholar

Figures(9)  /  Tables(2)

Article Metrics

Article views(2717) PDF downloads(465) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint