2020 Volume 10 Issue 3
Article Contents

Junying Cao, Lizhen Chen, Ziqiang Wang. A BLOCK-BY-BLOCK METHOD FOR THE IMPULSIVE FRACTIONAL ORDINARY DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 853-874. doi: 10.11948/20180312
Citation: Junying Cao, Lizhen Chen, Ziqiang Wang. A BLOCK-BY-BLOCK METHOD FOR THE IMPULSIVE FRACTIONAL ORDINARY DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 853-874. doi: 10.11948/20180312

A BLOCK-BY-BLOCK METHOD FOR THE IMPULSIVE FRACTIONAL ORDINARY DIFFERENTIAL EQUATIONS

  • Corresponding author: Email address:wangzq@lsec.cc.ac.cn(Z. Wang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Grant numbers 11901135, 11961009, 11671166, U1530401), Foundation of Guizhou Science and Technology Department ([2017]1086, [2020]1Y015), The first author would like to acknowledge the financial support by the China Scholarship Council (201708525037)
  • In this paper, a block-by-block numerical method is constructed for the impulsive fractional ordinary differential equations (IFODEs). Firstly, the stability and convergence analysis of the scheme are established. Secondly, the numerical solution which converges to the exact solution with order $ 3+\gamma $ for $ 0<\gamma<1 $ is proved, where $ \gamma $ is the order of the fractional derivative. Finally, a series of numerical examples are carried out to verify the correctness of the theoretical analysis.
    MSC: 65L12
  • 加载中
  • [1] J. Cao and C. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 2013, 238, 154-168. doi: 10.1016/j.jcp.2012.12.013

    CrossRef Google Scholar

    [2] K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 2002, 265(2), 229-248.

    Google Scholar

    [3] J. Dixon and S. McKee, Weakly singular discrete Gronwall inequalities, Z. Angew. Math. Mech., 1986, 66(11), 535-544. doi: 10.1002/zamm.19860661107

    CrossRef Google Scholar

    [4] M. Fečkan, Y. Zhou and J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 2012, 17(7), 3050-3060. doi: 10.1016/j.cnsns.2011.11.017

    CrossRef Google Scholar

    [5] G. Gao and Z. Zun, Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations, J. Sci. Comput., 2016, 66, 1281-1312. doi: 10.1007/s10915-015-0064-x

    CrossRef Google Scholar

    [6] T. Guo and K. Zhang, Impulsive fractional partial differential equations, Appl. Math. Comput., 2015, 257, 581-590.

    Google Scholar

    [7] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

    Google Scholar

    [8] J. Huang, Y. Tang and L. Vázquez, Convergence analysis of a block-by-block method for fractional differential equations, Numer. Math. Theory Methods Appl., 2012, 5(2), 229-241. doi: 10.4208/nmtma.2012.m1038

    CrossRef Google Scholar

    [9] P. Kumar, D. Pandey and D. Bahuguna, On a new class of abstract impulsive functional differential equations of fractional order, J. Nonlinear Sci. Appl., 2014, 7, 102-114. doi: 10.22436/jnsa.007.02.04

    CrossRef Google Scholar

    [10] P. Kumar and O. Agrawal, An approximate method for numerical solution of fractional differential equations, Signal Process., 2006, 86(10), 2602-2610. doi: 10.1016/j.sigpro.2006.02.007

    CrossRef Google Scholar

    [11] Z. Lin, J. Wang and W. Wei, Multipoint BVPs for generalized impulsive fractional differential equations, Appl. Math. Comput., 2015, 258, 608-616.

    Google Scholar

    [12] P. Linz, An method for nonlinear solving Volterra integral equations of the second kind, Math. Comput., 1969, 23(107), 595-599. doi: 10.1090/S0025-5718-1969-0247794-7

    CrossRef Google Scholar

    [13] C. Lubich, Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comput., 1985, 45(172), 463-469. doi: 10.1090/S0025-5718-1985-0804935-7

    CrossRef Google Scholar

    [14] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Interscience, New York, 1993.

    Google Scholar

    [15] N. Nyamoradi and R. Rodríguez-López, On boundary value problems for impulsive fractional differential equations, Appl. Math. Comput., 2015, 271, 874-892.

    Google Scholar

    [16] I. Podlubny, Fractional Differential Equations, Acad. Press, New York, 1999.

    Google Scholar

    [17] Z. Wang and J. Cao, Optimal convergence order analysis of a block-by-block algorithm for fractional differential equations, Chinese J. Engrg. Math., 2015, 32(4), 533-545.

    Google Scholar

    [18] J. Wang, M. Fečkan and Y. Zhou, Relaxed controls for nonlinear fractional impulsive evolution equations, J. Optim. Theory Appl., 2013, 156(1), 13-32.

    Google Scholar

    [19] A. Young, The application of approximate product-integration to the numerical solution of integral equations, Proc. R. Soc. London Ser. A, 1954, 224(1159), 561-573. doi: 10.1098/rspa.1954.0180

    CrossRef Google Scholar

Figures(2)  /  Tables(2)

Article Metrics

Article views(2565) PDF downloads(586) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint