2020 Volume 10 Issue 3
Article Contents

Zhaowen Zheng, Jing Shao. LIMIT POINT, STRONG LIMIT POINT AND DIRICHLET CONDITIONS FOR DISCRETE HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 875-891. doi: 10.11948/20190042
Citation: Zhaowen Zheng, Jing Shao. LIMIT POINT, STRONG LIMIT POINT AND DIRICHLET CONDITIONS FOR DISCRETE HAMILTONIAN SYSTEMS[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 875-891. doi: 10.11948/20190042

LIMIT POINT, STRONG LIMIT POINT AND DIRICHLET CONDITIONS FOR DISCRETE HAMILTONIAN SYSTEMS

  • Corresponding author: Email address:zhwzheng@126.com (Z. Zheng) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11671227), National Science Foundation of Shandong (ZR2019MA034, ZR2018LA004) and Science and Technology Project of High Schools of Shandong (J18KA220, J18KB107)
  • In this paper, a block-by-block numerical method is constructed for the impulsive fractional ordinary differential equations (IFODEs). Firstly, the stability and convergence analysis of the scheme are established. Secondly, the numerical solution which converges to the exact solution with order $ 3+\gamma $ for $ 0<\gamma<1 $ is proved, where $ \gamma $ is the order of the fractional derivative. Finally, a series of numerical examples are carried out to verify the correctness of the theoretical analysis.
    MSC: 39A70, 34B20, 47B25
  • 加载中
  • [1] C. D. Ahlbrandt and A. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations, Kluwer Academic Publishers, the Netherland, 1996.

    Google Scholar

    [2] B. P. Allahverdiev and H. Tuna, Limit-point criteria for q-Sturm-Liouville equations, Quaestiones Mathematicae, 2018. DOI: 10.2989/16073606.2018.1514541.

    Google Scholar

    [3] B. P. Allahverdiev and H. Tuna, Indices defect theory of singular Hahn-Sturm-Liouville operators, J. Appl. Anal. Comput., 2019, 9(5), 1719-1730.

    Google Scholar

    [4] R. Arens, Operational calculus of linear relations, Pacific J. Math., 1961, 11, 9-23. doi: 10.2140/pjm.1961.11.9

    CrossRef Google Scholar

    [5] F. V. Atkinson, Discrete and Continuous Boundary Value Problems, Academic Press, New York, 1964.

    Google Scholar

    [6] J. Chen and Y. Shi, The limit circle and limit point criteria for second-order linear difference equations, Computers Math. Appl., 2004, 47(6-7), 967-976. doi: 10.1016/S0898-1221(04)90080-6

    CrossRef Google Scholar

    [7] S. Clark and F. Gestesy, On Weyl-Titchmarsh theory for singular finite difference Hamiltonian systems, J. Comput. Appl. Math., 2004, 171(1-2), 151-184. doi: 10.1016/j.cam.2004.01.011

    CrossRef Google Scholar

    [8] E. A. Coddinton, Extension theory of formally normal and symmetric subspace, Mem. Amer. Math. Soc., 134, 1973.

    Google Scholar

    [9] N. Dunford and J. T. Schwartz, Linear Operators—Part Ⅱ, Spectral Theory: self-adjoint operators in Hilbert space, Wiley-Interscience, New York, 1963.

    Google Scholar

    [10] J. Elyseeva and R. S. Hilscher, Discrete oscillation theorems for symplectic eigenvalue problems with general boundary conditions depending nonlinearly on spectral parameter, Linear Algebra Appl., 2018, 558, 108-145.

    Google Scholar

    [11] L. H. Erbe and P. Yan, Disconjugacy for linear Hamiltonian difference systems, J. Math. Anal. Appl., 1992, 167, 353-367.

    Google Scholar

    [12] W. N. Everitt, On the limit point classification of second-order differential operators, J. London Math. Soc., 1966, 41, 531-534.

    Google Scholar

    [13] W. N. Everitt, A note on the Dirichlet condition for second-order differential expressions, Canad. J. Math. 1976, 28, 312-320. doi: 10.4153/CJM-1976-033-3

    CrossRef Google Scholar

    [14] W. N. Everitt and M. Giertz, On some properties of the domains of powers of certain differential operators, Proc. London Math. Soc., 1972, 24(3), 256-763.

    Google Scholar

    [15] W. N. Everitt, M. Giertz and J. B. McLeod, On the strong and weak limit-point classification of second-order differential expressions, Proc. London Math. Soc., 1974, 29(3), 142-153.

    Google Scholar

    [16] W. N. Everitt, D. B. Hinton and J. S. W. Wong, On the strong limit point condition of ordinary differential equations of order $2n$, Proc. London Math. Soc., 1974, 29, 351-357.

    Google Scholar

    [17] S. Hassi, M. Moller and H. de Snoo, Limit-point/limit-circle classification for Hain-Lust type equations, Math. Nachr., 2018, 291, 652-668. doi: 10.1002/mana.201600254

    CrossRef Google Scholar

    [18] R. S. Hilscher and P., R. Zemanek, Limit circle invariance for two differential systems on time scales, Math. Nachr., 2015, 288, 696-709. doi: 10.1002/mana.201400005

    CrossRef Google Scholar

    [19] H. Kalf, Remarks on some Dirichlet type results for semibounded Sturm-Liouville operators, Math. Ann., 1974, 210, 197-205. doi: 10.1007/BF01350583

    CrossRef Google Scholar

    [20] M. K. Kwong, Note on the strong limit point condition of second-order differential expressions, Quart. J. Math., 1977, 28, 201-208. doi: 10.1093/qmath/28.2.201

    CrossRef Google Scholar

    [21] M. Lesch and M. Malamud, On the deficiency indices and self-adjointness of symmetric Hamiltonian systems, J. Diff. Eqs., 2003, 18, 556-615.

    Google Scholar

    [22] J. Qi and S. Chen, Strong limit-point classification of singular Hamiltonian expressions with complex coefficients, Proc. Amer. Math. Soc., 2004, 132, 1667-1674. doi: 10.1090/S0002-9939-04-07037-6

    CrossRef Google Scholar

    [23] J. Qi and S. Chen, Lower bound for the spectrum and the presence of pure point spectrum of a singular discrete Hamiltonian system, J. Math. Anal. Appl., 2004, 295, 539-556. doi: 10.1016/j.jmaa.2004.03.060

    CrossRef Google Scholar

    [24] J. Qi and H. Wu, Limit Point, strong limit point and Dirichlet conditions for Hamiltonian differential systems, Math. Nachr., 2011, 284, 764-780.

    Google Scholar

    [25] D. Race, On the strong limit-point and Dirichlet properties of second order differential expressions, Proc. Royal Soc.Edinburgh, 1985, 101, 283-296. doi: 10.1017/S0308210500020837

    CrossRef Google Scholar

    [26] G. Ren and Y. Shi, Deficiency indices and definiteness conditions for a class of discrete linear Hamiltonian systems, Appl. Math. Comput., 2011, 218, 3414-3429.

    Google Scholar

    [27] P. Sepitka and R. S. Hilscher, Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems, J. Diff. Euqat. Appl., 2017, 23(4), 657-698. doi: 10.1080/10236198.2016.1270274

    CrossRef Google Scholar

    [28] Y. Shi, Symplectic structure of discrete Hamiltonian systems, J. Math. Anal. Appl., 2002, 266, 472-478. doi: 10.1006/jmaa.2000.7747

    CrossRef Google Scholar

    [29] Y. Shi, Weyl-Titchmarsh theory for a class of discrete linear Hamiltonian systems, Linear Algebra Appl., 2006, 416, 452-479. doi: 10.1016/j.laa.2005.11.025

    CrossRef Google Scholar

    [30] Y. Shi, The Glazman-Krein-Naimark theory for Hermitian subspaces, J. Operat. Theor., 2012, 68(1), 241-256.

    Google Scholar

    [31] H. Sun and Y. Shi, Eigenvalues of second-order difference equations with coupled boundary conditions, Linear Algebra Appl., 2006, 414, 261-372.

    Google Scholar

    [32] H. Sun and Y. Shi, Strong limit point criteria for a class of singular discrete Hamiltonian difference system, J. Math. Anal. Appl., 2007, 336, 224-242. doi: 10.1016/j.jmaa.2007.02.058

    CrossRef Google Scholar

    [33] H. Sun and Y. Shi, Spectral properties of singular discrete linear Hamiltonian systems, J. Diff. Equa. Appl., 2014, 20(3). DOI:10.1080/10236198.2013.824432.

    CrossRef Google Scholar

    [34] S. Sun, Z. Han and S. Chen, Strong limit point for linear Hamiltonian difference system, Ann. Diff. Eqs., 2005, 21, 407-411.

    Google Scholar

    [35] J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Math., vol. 1258, Springer-Verlag, Berlin, 1987.

    Google Scholar

    [36] J. Weidmann, Linear Operators in Hilbert Spaces, Springe-Verlag, New-York, 1980.

    Google Scholar

    [37] H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäaten und die zugehörige Entwicklung willkrlicher Funktionen, Math. Ann., 1910, 68, 220-269. doi: 10.1007/BF01474161

    CrossRef Google Scholar

    [38] Z. Zheng, J. Qi and S. Chen, Eigenvalues below the lower bound of minimal operators of singular Hamiltonian expressions, Comput. Math. Appl., 2008, 56, 2825-2833. doi: 10.1016/j.camwa.2008.05.043

    CrossRef Google Scholar

    [39] R. A. Horn and C. R. Johnson, Matrix Analysis, Combridge Press, 1985.

    Google Scholar

Article Metrics

Article views(2562) PDF downloads(554) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint