[1]
|
C. D. Ahlbrandt and A. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations, Kluwer Academic Publishers, the Netherland, 1996.
Google Scholar
|
[2]
|
B. P. Allahverdiev and H. Tuna, Limit-point criteria for q-Sturm-Liouville equations, Quaestiones Mathematicae, 2018. DOI: 10.2989/16073606.2018.1514541.
Google Scholar
|
[3]
|
B. P. Allahverdiev and H. Tuna, Indices defect theory of singular Hahn-Sturm-Liouville operators, J. Appl. Anal. Comput., 2019, 9(5), 1719-1730.
Google Scholar
|
[4]
|
R. Arens, Operational calculus of linear relations, Pacific J. Math., 1961, 11, 9-23. doi: 10.2140/pjm.1961.11.9
CrossRef Google Scholar
|
[5]
|
F. V. Atkinson, Discrete and Continuous Boundary Value Problems, Academic Press, New York, 1964.
Google Scholar
|
[6]
|
J. Chen and Y. Shi, The limit circle and limit point criteria for second-order linear difference equations, Computers Math. Appl., 2004, 47(6-7), 967-976. doi: 10.1016/S0898-1221(04)90080-6
CrossRef Google Scholar
|
[7]
|
S. Clark and F. Gestesy, On Weyl-Titchmarsh theory for singular finite difference Hamiltonian systems, J. Comput. Appl. Math., 2004, 171(1-2), 151-184. doi: 10.1016/j.cam.2004.01.011
CrossRef Google Scholar
|
[8]
|
E. A. Coddinton, Extension theory of formally normal and symmetric subspace, Mem. Amer. Math. Soc., 134, 1973.
Google Scholar
|
[9]
|
N. Dunford and J. T. Schwartz, Linear Operators—Part Ⅱ, Spectral Theory: self-adjoint operators in Hilbert space, Wiley-Interscience, New York, 1963.
Google Scholar
|
[10]
|
J. Elyseeva and R. S. Hilscher, Discrete oscillation theorems for symplectic eigenvalue problems with general boundary conditions depending nonlinearly on spectral parameter, Linear Algebra Appl., 2018, 558, 108-145.
Google Scholar
|
[11]
|
L. H. Erbe and P. Yan, Disconjugacy for linear Hamiltonian difference systems, J. Math. Anal. Appl., 1992, 167, 353-367.
Google Scholar
|
[12]
|
W. N. Everitt, On the limit point classification of second-order differential operators, J. London Math. Soc., 1966, 41, 531-534.
Google Scholar
|
[13]
|
W. N. Everitt, A note on the Dirichlet condition for second-order differential expressions, Canad. J. Math. 1976, 28, 312-320. doi: 10.4153/CJM-1976-033-3
CrossRef Google Scholar
|
[14]
|
W. N. Everitt and M. Giertz, On some properties of the domains of powers of certain differential operators, Proc. London Math. Soc., 1972, 24(3), 256-763.
Google Scholar
|
[15]
|
W. N. Everitt, M. Giertz and J. B. McLeod, On the strong and weak limit-point classification of second-order differential expressions, Proc. London Math. Soc., 1974, 29(3), 142-153.
Google Scholar
|
[16]
|
W. N. Everitt, D. B. Hinton and J. S. W. Wong, On the strong limit point condition of ordinary differential equations of order $2n$, Proc. London Math. Soc., 1974, 29, 351-357.
Google Scholar
|
[17]
|
S. Hassi, M. Moller and H. de Snoo, Limit-point/limit-circle classification for Hain-Lust type equations, Math. Nachr., 2018, 291, 652-668. doi: 10.1002/mana.201600254
CrossRef Google Scholar
|
[18]
|
R. S. Hilscher and P., R. Zemanek, Limit circle invariance for two differential systems on time scales, Math. Nachr., 2015, 288, 696-709. doi: 10.1002/mana.201400005
CrossRef Google Scholar
|
[19]
|
H. Kalf, Remarks on some Dirichlet type results for semibounded Sturm-Liouville operators, Math. Ann., 1974, 210, 197-205. doi: 10.1007/BF01350583
CrossRef Google Scholar
|
[20]
|
M. K. Kwong, Note on the strong limit point condition of second-order differential expressions, Quart. J. Math., 1977, 28, 201-208. doi: 10.1093/qmath/28.2.201
CrossRef Google Scholar
|
[21]
|
M. Lesch and M. Malamud, On the deficiency indices and self-adjointness of symmetric Hamiltonian systems, J. Diff. Eqs., 2003, 18, 556-615.
Google Scholar
|
[22]
|
J. Qi and S. Chen, Strong limit-point classification of singular Hamiltonian expressions with complex coefficients, Proc. Amer. Math. Soc., 2004, 132, 1667-1674. doi: 10.1090/S0002-9939-04-07037-6
CrossRef Google Scholar
|
[23]
|
J. Qi and S. Chen, Lower bound for the spectrum and the presence of pure point spectrum of a singular discrete Hamiltonian system, J. Math. Anal. Appl., 2004, 295, 539-556. doi: 10.1016/j.jmaa.2004.03.060
CrossRef Google Scholar
|
[24]
|
J. Qi and H. Wu, Limit Point, strong limit point and Dirichlet conditions for Hamiltonian differential systems, Math. Nachr., 2011, 284, 764-780.
Google Scholar
|
[25]
|
D. Race, On the strong limit-point and Dirichlet properties of second order differential expressions, Proc. Royal Soc.Edinburgh, 1985, 101, 283-296. doi: 10.1017/S0308210500020837
CrossRef Google Scholar
|
[26]
|
G. Ren and Y. Shi, Deficiency indices and definiteness conditions for a class of discrete linear Hamiltonian systems, Appl. Math. Comput., 2011, 218, 3414-3429.
Google Scholar
|
[27]
|
P. Sepitka and R. S. Hilscher, Dominant and recessive solutions at infinity and genera of conjoined bases for discrete symplectic systems, J. Diff. Euqat. Appl., 2017, 23(4), 657-698. doi: 10.1080/10236198.2016.1270274
CrossRef Google Scholar
|
[28]
|
Y. Shi, Symplectic structure of discrete Hamiltonian systems, J. Math. Anal. Appl., 2002, 266, 472-478. doi: 10.1006/jmaa.2000.7747
CrossRef Google Scholar
|
[29]
|
Y. Shi, Weyl-Titchmarsh theory for a class of discrete linear Hamiltonian systems, Linear Algebra Appl., 2006, 416, 452-479. doi: 10.1016/j.laa.2005.11.025
CrossRef Google Scholar
|
[30]
|
Y. Shi, The Glazman-Krein-Naimark theory for Hermitian subspaces, J. Operat. Theor., 2012, 68(1), 241-256.
Google Scholar
|
[31]
|
H. Sun and Y. Shi, Eigenvalues of second-order difference equations with coupled boundary conditions, Linear Algebra Appl., 2006, 414, 261-372.
Google Scholar
|
[32]
|
H. Sun and Y. Shi, Strong limit point criteria for a class of singular discrete Hamiltonian difference system, J. Math. Anal. Appl., 2007, 336, 224-242. doi: 10.1016/j.jmaa.2007.02.058
CrossRef Google Scholar
|
[33]
|
H. Sun and Y. Shi, Spectral properties of singular discrete linear Hamiltonian systems, J. Diff. Equa. Appl., 2014, 20(3). DOI:10.1080/10236198.2013.824432.
CrossRef Google Scholar
|
[34]
|
S. Sun, Z. Han and S. Chen, Strong limit point for linear Hamiltonian difference system, Ann. Diff. Eqs., 2005, 21, 407-411.
Google Scholar
|
[35]
|
J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Math., vol. 1258, Springer-Verlag, Berlin, 1987.
Google Scholar
|
[36]
|
J. Weidmann, Linear Operators in Hilbert Spaces, Springe-Verlag, New-York, 1980.
Google Scholar
|
[37]
|
H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäaten und die zugehörige Entwicklung willkrlicher Funktionen, Math. Ann., 1910, 68, 220-269. doi: 10.1007/BF01474161
CrossRef Google Scholar
|
[38]
|
Z. Zheng, J. Qi and S. Chen, Eigenvalues below the lower bound of minimal operators of singular Hamiltonian expressions, Comput. Math. Appl., 2008, 56, 2825-2833. doi: 10.1016/j.camwa.2008.05.043
CrossRef Google Scholar
|
[39]
|
R. A. Horn and C. R. Johnson, Matrix Analysis, Combridge Press, 1985.
Google Scholar
|