2020 Volume 10 Issue 3
Article Contents

B. Ahmad, A. Alsaedi, S. K. Ntouyas. FRACTIONAL ORDER NONLINEAR MIXED COUPLED SYSTEMS WITH COUPLED INTEGRO-DIFFERENTIAL BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 892-903. doi: 10.11948/20190096
Citation: B. Ahmad, A. Alsaedi, S. K. Ntouyas. FRACTIONAL ORDER NONLINEAR MIXED COUPLED SYSTEMS WITH COUPLED INTEGRO-DIFFERENTIAL BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(3): 892-903. doi: 10.11948/20190096

FRACTIONAL ORDER NONLINEAR MIXED COUPLED SYSTEMS WITH COUPLED INTEGRO-DIFFERENTIAL BOUNDARY CONDITIONS

  • We study the existence and uniqueness of solutions for a class of coupled fractional differential equations involving both Riemann-Liouville and Caputo fractional derivatives, and coupled integro-differential boundary conditions. We derive the desired results with the aid of modern methods of functional analysis. An example illustrating the abstract results is also presented.
    MSC: 26A33, 34B15
  • 加载中
  • [1] B. Ahmad, S. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Solitons Fractals, 2016, 83, 234-241. doi: 10.1016/j.chaos.2015.12.014

    CrossRef Google Scholar

    [2] B. Ahmad, R. Luca, Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions, Fract. Calc. Appl. Anal., 2018, 21, 423-441. doi: 10.1515/fca-2018-0024

    CrossRef Google Scholar

    [3] A. Alsaedi, S.K. Ntouyas, D. Garout, B. Ahmad, Coupled fractional-order systems with nonlocal coupled integral and discrete boundary conditions, Bull. Malays. Math. Sci. Soc., 2019, 42, 241-266. doi: 10.1007/s40840-017-0480-1

    CrossRef Google Scholar

    [4] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2005.

    Google Scholar

    [5] M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecological Modelling, 2015, 318, 8-18. doi: 10.1016/j.ecolmodel.2015.06.016

    CrossRef Google Scholar

    [6] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.

    Google Scholar

    [7] S. Liang, J. Zhang, Existence of multiple positive solutions for $m$-point fractional boundary value problems on an infinite interval, Math. Comput. Modelling, 2011, 54, 1334-1346. doi: 10.1016/j.mcm.2011.04.004

    CrossRef Google Scholar

    [8] A.B. Malinowska, D.F.M. Torres, Introduction to the Fractional Calculus of Variations, Imperial College Press, London, 2012.

    Google Scholar

    [9] J. Sabatier, O.P. Agrawal, J.A.T. Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.

    Google Scholar

    [10] J. R. Wang, Y. Zhang, Analysis of fractional order differential coupled systems, Math. Methods Appl. Sci., 2015, 38, 3322-3338. doi: 10.1002/mma.3298

    CrossRef Google Scholar

    [11] C. Zhai, L. Xu, Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, 2820-2827. doi: 10.1016/j.cnsns.2014.01.003

    CrossRef Google Scholar

Article Metrics

Article views(2460) PDF downloads(633) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint