[1]
|
A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 2015, 280, 424-438. doi: 10.1016/j.jcp.2014.09.031
CrossRef Google Scholar
|
[2]
|
F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 1973, 81(3), 637-654. doi: 10.1086/260062
CrossRef Google Scholar
|
[3]
|
P. Carr, L. Wu, The finite moment log stable process and option pricing, J. Finance, 2003, 58(2), 597-626.
Google Scholar
|
[4]
|
A. Cartea, D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Phys. A: Stat. Mech. Appl., 2007, 374(2), 749-763.
Google Scholar
|
[5]
|
W. T. Chen, X. Xu, S. P. Zhu, Analytically pricing European-style options under the modified Black-Scholes equation with a spatial-fractional derivative, Q. Appl. Math., 2014, 72(3), 597-611. doi: 10.1090/S0033-569X-2014-01373-2
CrossRef Google Scholar
|
[6]
|
A. Cartea, Derivatives pricing with market point processes using tick-by-tick data, Q. Finance, 2013, 13(1), 111-123.
Google Scholar
|
[7]
|
W. T. Chen, X. Xu, S. P. Zhu, Analytically pricing double barrier options based on a time-fractional Black-Scholes equation, Comput. Math. Appl., 2015, 69(12), 1407-1419. doi: 10.1016/j.camwa.2015.03.025
CrossRef Google Scholar
|
[8]
|
W. T. Chen, B. W. Yan, G. H. Lian et al., Numerically pricing American options under the generalized mixed fractional Brownian motion model, Phys. A: Stat. Mech. Appl., 2016, 451, 180-189. doi: 10.1016/j.physa.2015.12.154
CrossRef Google Scholar
|
[9]
|
Z. D. Cen, J. Huang, A. M. Xu et al., Numerical approximation of a time-fractional Black-Scholes equation, Comput. Math. Appl., 2018, 8(75), 2874-2887.
Google Scholar
|
[10]
|
G. H. Gao, Z. Z. Sun, H. W. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 2014, 259, 33-50. doi: 10.1016/j.jcp.2013.11.017
CrossRef Google Scholar
|
[11]
|
G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time. Application to Merton's optimal portfolio, Comput. Math. Appl., 2010, 59(3), 1142-1164. doi: 10.1016/j.camwa.2009.05.015
CrossRef Google Scholar
|
[12]
|
M. N. Koleva, L. G. Vulkov, Numerical solution of time-fractional Black-Scholes equation, J. Comput. Appl. Math., 2017, 36 (4), 1699-1715.
Google Scholar
|
[13]
|
J. R. Liang, J. Wang, W. J Zhang et al., The solutions to a bi-fractional Black-Scholes-Merton differential equation, Int. J. Pure Appl. Math., 2010, 58(1), 99-112.
Google Scholar
|
[14]
|
W. Y. Liao, A compact high-order finite difference method for unsteady convection-diffusion equation, Int. J. Comput. Meth. Eng. Sci. Mech., 2012, 13(3), 135-145.
Google Scholar
|
[15]
|
B. Mandelbrot, The variation of certain speculative prices, J. Bus. Univ. Chicago, 1963, 36, 394-419.
Google Scholar
|
[16]
|
L. N. Song, W. G. Wang, Solution of the fractional Black-Scholes option pricing model by finite difference method, Abstr. Appl. Anal., 2013, Article ID 194286, 1-10.
Google Scholar
|
[17]
|
R. H. De Staelen, A. S. Hendy, Numerically pricing double barrier options in a time-fractional Black-Scholes model, Comput. Math. Appl., 2017, 74, 1166-1175. doi: 10.1016/j.camwa.2017.06.005
CrossRef Google Scholar
|
[18]
|
Z. Z. Sun, G. H. Gao, Finite Difference Methods for Fractional Differential Equations, Science Press, Beijing, 2015.
Google Scholar
|
[19]
|
W. Wyss, The fractional Black-Scholes equations, Fract. Calc. Appl. Anal., 2000, 3(1), 51-61.
Google Scholar
|
[20]
|
X. Z. Yong, X. Zhang, L. F. Wu, A kind of efficient difference method for time-fractional option pricing model, Appl. Math. J. Chin. Univ., 2015, 30(2), 234-244.
Google Scholar
|
[21]
|
X. Z. Yang, L. F. Wu, S. Z. Sun et al., A universal difference method for time-space fractional Black-Scholes equation, Adv. Differ. Equ., 2016, 71, 1-14.
Google Scholar
|
[22]
|
H. M. Zhang, F. W. Liu, I. Turner et al., The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option, Appl. Math. Model., 2016, 40(11-12), 5819-5834. doi: 10.1016/j.apm.2016.01.027
CrossRef Google Scholar
|
[23]
|
H. M. Zhang, F. W. Liu, I. Turner et al., Numerical solution of the time fractional Black-Scholes model governing European options, Comput. Math. Appl., 2016, 71(9), 1772-1783. doi: 10.1016/j.camwa.2016.02.007
CrossRef Google Scholar
|
[24]
|
Y. Zhang, X. Z. Yang, Pure alternative segment explicit-implicit parallel difference methods for time-fractional Black-Scholes equation, China Science Paper, 2017, 12(17), 1966-1971.
Google Scholar
|
[25]
|
Z. Q. Zhou, X. M. Gao, Numerical methods for pricing American options with time-fractional PDE models, Math. Prob. Eng., 2016, Article ID 5614950, 1-8.
Google Scholar
|