2019 Volume 9 Issue 1
Article Contents

A. M. Ishkhanyan. SERIES SOLUTIONS OF CONFLUENT HEUN EQUATIONS IN TERMS OF INCOMPLETE GAMMA-FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 118-139. doi: 10.11948/2019.118
Citation: A. M. Ishkhanyan. SERIES SOLUTIONS OF CONFLUENT HEUN EQUATIONS IN TERMS OF INCOMPLETE GAMMA-FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 118-139. doi: 10.11948/2019.118

SERIES SOLUTIONS OF CONFLUENT HEUN EQUATIONS IN TERMS OF INCOMPLETE GAMMA-FUNCTIONS

  • Author Bio: Email address: aishkhanyan@gmail.com (A.M. Ishkhanyan)
  • Fund Project: This work has been supported by the Armenian State Committee of Science (SCS Grants No. 18RF-139 and 18T-1C276), the Armenian National Science and Education Fund (ANSEF Grant No. PS-4986), and the RussianArmenian (Slavonic) University at the expense of the Ministry of Education and Science of the Russian Federation
  • We present a simple systematic algorithm for construction of expansions of the solutions of ordinary differential equations with rational coefficients in terms of mathematical functions having indefinite integral representation. The approach employs an auxiliary equation involving only the derivatives of a solution of the equation under consideration. Using power-series expansions of the solutions of this auxiliary equation, we construct several expansions of the four confluent Heun equations' solutions in terms of the incomplete Gamma-functions. In the cases of single- and double-confluent Heun equations the coefficients of the expansions obey four-term recurrence relations, while for the bi- and tri-confluent Heun equations the recurrence relations in general involve five terms. Other expansions for which the expansion coefficients obey recurrence relations involving more terms are also possible. The particular cases when these relations reduce to ones involving less number of terms are identified. The conditions for deriving closed-form finite-sum solutions via right-hand side termination of the constructed series are discussed.
    MSC: 33E30, 34B30, 30Bxx
  • 加载中
  • [1] P. Appell, M. J. Kampe de Feriet, Fonctions hypergéométriques et hypersphériques: polynomes d'Hermite, Gauthier-Villars, Paris, 1926.

    Google Scholar

    [2] E. S. Cheb-Terrab, Solutions for the general, confluent and biconfluent Heun equations and their connection with Abel equations, J. Phys. A, 2004, 37, 9923-9949. doi: 10.1088/0305-4470/37/42/007

    CrossRef Google Scholar

    [3] L. J. El-Jaick and B. D. B. Figueiredo, New solutions to the confluent Heun equation and quasiexact solvability, 2013, arXiv: 1311.7677[math-ph].

    Google Scholar

    [4] L. J. El-Jaick and B. D. B. Figueiredo, A limit of the confluent Heun equation and the Schrödinger equation for an inverted potential and for an electric dipole, J. Math. Phys., 2009, 50, 123511. doi: 10.1063/1.3268591

    CrossRef Google Scholar

    [5] L. J. El-Jaick and B. D. B. Figueiredo, Solutions for confluent and double-confluent Heun equations, J. Math. Phys., 2008, 49, 083508. doi: 10.1063/1.2970150

    CrossRef Google Scholar

    [6] L. J. El-Jaick and B. D. B. Figueiredo, Confluent Heun equations: convergence of solutions in series of coulomb wave functions, J. Phys. A, 2013, 46, 085203. doi: 10.1088/1751-8113/46/8/085203

    CrossRef Google Scholar

    [7] A. Erdélyi, The Fuchsian equation of second order with four singularities, Duke Math. J., 1942, 9, 48-58. doi: 10.1215/S0012-7094-42-00906-2

    CrossRef Google Scholar

    [8] A. Erdélyi, Certain expansions of solutions of the Heun equation, Q. J. Math. (Oxford), 1944, 15, 62-69.

    Google Scholar

    [9] B. D. B. Figueiredo, Generalized spheroidal wave equation and limiting cases, J. Math. Phys., 2007, 48, 013503. doi: 10.1063/1.2406057

    CrossRef Google Scholar

    [10] A. Hautot, Sur des combinaisons linéaires d'un nombre fini de fonctions transcendantes comme solutions d'équations différentielles du second ordre, Bull. Soc. Roy. Sci. Liège, 1971, 40, 13-23.

    Google Scholar

    [11] K. Heun, Zur Theorie der Riemann'chen Functionen Zweiter Ordnung mit Verzweigungspunkten, Math. Ann., 1889, 33, 161-179.

    Google Scholar

    [12] M. Hortaçsu, Heun functions and some of their applications in physics, Advances in High Energy Physics, 2018, 2018, 8621573.

    Google Scholar

    [13] C.-L. Ho, R. Sasaki and K. Takemura, Confluence of apparent singularities in multi-indexed orthogonal polynomials: the Jacobi case, J. Phys. A, 2013, 46, 115205. doi: 10.1088/1751-8113/46/11/115205

    CrossRef Google Scholar

    [14] A. Ishkhanyan, Incomplete Beta-function expansions of the solutions to the confluent Heun equation, J. Phys. A, 2005, 38, L491-L498. doi: 10.1088/0305-4470/38/28/L02

    CrossRef Google Scholar

    [15] A. M. Ishkhanyan, Appell hypergeometric expansions of the solutions of the general Heun equation, Constructive Approximation, 2018. DOI: https://doi.org/10.1007/s00365-018-9424-8.

    CrossRef Google Scholar

    [16] A. M. Ishkhanyan, Schrödinger potentials solvable in terms of the confluent Heun functions, Theor. Math. Phys., 2016, 188, 980-993. doi: 10.1134/S0040577916070023

    CrossRef Google Scholar

    [17] T. A. Ishkhanyan and A.M. Ishkhanyan, Expansions of the solutions to the confluent Heun equation in terms of the Kummer confluent hypergeometric functions, AIP Advances, 2014, 4, 087132. doi: 10.1063/1.4893997

    CrossRef Google Scholar

    [18] T. A. Ishkhanyan, Y. Pashayan-Leroy, M. R. Gevorgyn, C. Leroy and A. M. Ishkhanyan, Expansions of the solutions of the biconfluent Heun equation in terms of incomplete Beta and Gamma functions, J. Contemp. Physics (Armenian Ac. Sci.), 2016, 51, 229-236. doi: 10.3103/S106833721603004X

    CrossRef Google Scholar

    [19] T. A. Ishkhanyan and A. M. Ishkhanyan, Solutions of the bi-confluent Heun equation in terms of the Hermite functions, Ann. Phys., 2017, 383, 79-91. doi: 10.1016/j.aop.2017.04.015

    CrossRef Google Scholar

    [20] K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé: A modern theory of special functions, Aspects of mathematics, v. 16, Vieweg, Braunschweig, 1991.

    Google Scholar

    [21] E. G. Kalnins and W. Miller, Jr., Hypergeometric expansions of Heun polynomials, SIAM J. Math. Anal., 1991, 22, 1450-1459. doi: 10.1137/0522093

    CrossRef Google Scholar

    [22] A. Ya. Kazakov, Monodromy of Heun Equations with Apparent Singularities, Int. J. Theor. Math. Phys., 2013, 3, 190-196.

    Google Scholar

    [23] G.V. Kraniotis, The Klein-Gordon-Fock equation in the curved spacetime of the Kerr-Newman (anti) de Sitter black hole, Class. Quantum Grav., 2016, 33, 225011. doi: 10.1088/0264-9381/33/22/225011

    CrossRef Google Scholar

    [24] Th. Kurth and D. Schmidt, On the global representation of the solutions of second order linear differential equations having an irregular singularity of rank one in by series in terms of confluent hypergeometric functions, SIAM J. Math. Anal., 1986, 17, 1086-1103. doi: 10.1137/0517077

    CrossRef Google Scholar

    [25] E. W. Leaver, Solutions to a generalized spheroidal wave equation: Teukolsky's equations in general relativity, and the two-center problem in molecular quantum mechanics, J. Math. Phys., 1986, 27, 1238-1265. doi: 10.1063/1.527130

    CrossRef Google Scholar

    [26] C. Leroy and A. M. Ishkhanyan, Expansions of the solutions of the confluent Heun equation in terms of the incomplete Beta and the Appell generalized hypergeometric functions, Integral Transforms and Special Functions, 2015, 26, 451-459. doi: 10.1080/10652469.2015.1019490

    CrossRef Google Scholar

    [27] M. Martins Afonso and D. Vincenzi, Nonlinear elastic polymers in random flow, J. Fluid Mech. 540, 99-108. doi: 10.1017/S0022112005005951

    CrossRef Google Scholar

    [28] E. Melas, On the Liouvillian solutions to the perturbation equations of the Schwarzschild black hole, J. Math. Phys., 2018, 59, 082502. doi: 10.1063/1.5040350

    CrossRef Google Scholar

    [29] H. Nakamura, Nonadiabatic Transition: Concepts, Basic Theories and Applications, World Scientific, Singapore, 2012.

    Google Scholar

    [30] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010.

    Google Scholar

    [31] M. Renardy, On the eigenfunctions for Hookean and FENE dumbbell models, J. Rheol., 2005, 57, 1311-1324 (2013).

    Google Scholar

    [32] E. Renzi and P. Sammarco, The hydrodynamics of landslide tsunamis: current analytical models and future research directions, Landslides, 2016, 13, 1369-1377. doi: 10.1007/s10346-016-0680-z

    CrossRef Google Scholar

    [33] A. Ronveaux (ed.), Heun's Differential Equations, Oxford University Press, London, 1995.

    Google Scholar

    [34] D. Schmidt, Die Lösung der linearen Differentialgleichung 2. Ordnung um zwei einfache Singularitäten durch Reihen nach hypergeometrichen Funktionen, J. Reine Angew. Math., 1979, 309, 127-148.

    Google Scholar

    [35] A. V. Shanin and R. V. Craster, Removing false singular points as a method of solving ordinary differential equations, Eur. J. Appl. Math., 2002, 13, 617-639. doi: 10.1017/S0956792502004916

    CrossRef Google Scholar

    [36] B. W. Shore, Manipulating Quantum Structures Using Laser Pulses, Cambridge University Press, New York, 2011.

    Google Scholar

    [37] A. E. Sitnitsky, Exactly solvable Schrödinger equation with double-well potential for hydrogen bond, Chem. Phys. Lett., 2017, 676, 169-173. doi: 10.1016/j.cplett.2017.03.065

    CrossRef Google Scholar

    [38] L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.

    Google Scholar

    [39] S. Y. Slavyanov, Relations between linear equations and Painlevé's equations, Constr. Approx., 2014, 39, 75-83. doi: 10.1007/s00365-013-9216-0

    CrossRef Google Scholar

    [40] S. Yu. Slavyanov and W. Lay, Special functions, Oxford University Press, Oxford, 2000.

    Google Scholar

    [41] S. Yu. Slavyanov, D. A. Satco, A. M. Ishkhanyan and T. A. Rotinyan, Generation and removal of apparent singularities in linear ordinary differential equations with polynomial coefficients, Theor. Math. Phys., 2016, 189, 1726-1733. doi: 10.1134/S0040577916120059

    CrossRef Google Scholar

    [42] B. D. Sleeman and V. B. Kuznetsov, Heun Functions: Expansions in Series of Hypergeometric Functions, http://dlmf.nist.gov/31.11.

    Google Scholar

    [43] N. Svartholm, Die Lösung der Fuchs'chen Differentialgleichung zweiter Ordnung durch Hypergeometriche Polynome, Math. Ann., 1939, 116, 413-421. doi: 10.1007/BF01597365

    CrossRef Google Scholar

    [44] K. Takemura, Integral transformation of Heun's equation and some applications, J. Math. Soc. Japan, 2017, 69, 849-891. doi: 10.2969/jmsj/06920849

    CrossRef Google Scholar

Article Metrics

Article views(3513) PDF downloads(1561) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint