2019 Volume 9 Issue 1
Article Contents

Abdulcabbar Sönmez. SOME NEW SEQUENCE SPACES DERIVED BY THE COMPOSITION OF BINOMIAL MATRIX AND DOUBLE BAND MATRIX[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 231-244. doi: 10.11948/2019.231
Citation: Abdulcabbar Sönmez. SOME NEW SEQUENCE SPACES DERIVED BY THE COMPOSITION OF BINOMIAL MATRIX AND DOUBLE BAND MATRIX[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 231-244. doi: 10.11948/2019.231

SOME NEW SEQUENCE SPACES DERIVED BY THE COMPOSITION OF BINOMIAL MATRIX AND DOUBLE BAND MATRIX

  • In this paper, we construct three new sequence spaces $ b^{{r,s}}_{0}(G) $, $ b^{{r,s}}_{c}(G) $ and $ b^{{r,s}}_{\infty}(G) $ and mention some inclusion relations, where $ G $ is generalized difference matrix. Moreover, we give Schauder basis of the spaces $ b^{{r,s}}_{0}(G) $ and $ b^{{r,s}}_{c}(G) $. Afterward, we determine $ \alpha- $, $ \beta- $ and $ \gamma- $duals of those spaces. Finally, we characterize some matrix classes related to the space $ b^{{r,s}}_{c}(G) $.
    MSC: 40C05, 40H05, 46B45
  • 加载中
  • [1] B. Altay, F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian Math. J., 2005, 57(1), 1-17. doi: 10.1007/s11253-005-0168-9

    CrossRef Google Scholar

    [2] B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces $\ell_{p}$ and $\ell_{\infty }$ I, Inform. Sci., 2006, 176(10), 1450-1462. doi: 10.1016/j.ins.2005.05.008

    CrossRef Google Scholar

    [3] B. Altay, H. Polat, On some new Euler difference sequence spaces, Southeast Asian Bull. Math., 2006, 30(2), 209-220.

    Google Scholar

    [4] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 2003, 55(1), 136-147. doi: 10.1023/A:1025080820961

    CrossRef Google Scholar

    [5] M. C. Bişgin, A. Sönmez, Two new sequence spaces generated by the composition of $m$ th order generalized difference matrix and lambda matrix, J. Inequal. Appl., 2014, 274(2014).

    Google Scholar

    [6] M. C. Bişgin, Some notes on the sequence spaces $\ell_{p}^{\lambda}(G^{m})$ and $\ell_{\infty}^{\lambda}(G^{m})$, GU J. Sci., 2017, 30(1), 381-393.

    Google Scholar

    [7] M. C. Bişgin, The Binomial sequence spaces of nonabsolute type, J. Inequal. Appl., 2016, 309(2016).

    Google Scholar

    [8] M. C. Bişgin, The Binomial sequence spaces which include the spaces $ell_{p}$ and $ell_{infty}$ and Geometric Properties, J. Inequal. Appl., 2016, 304(2016).

    Google Scholar

    [9] M. C. Bişgin, Matrix transformations and compact operators on the binomial sequence spaces, Under Review.

    Google Scholar

    [10] M. C. Bişgin, The binomial almost convergent and null sequence spaces, Commun. Fac. Sci. Univ. Ank. Series A1, 2018, 67(1), 211-224.

    Google Scholar

    [11] B. Choudhary, S. Nanda, Functional Analysis with Applications, John Wiley & sons Inc., New Delhi, 1989.

    Google Scholar

    [12] M. Et, On Some Difference Sequence Spaces, Turkish J. Math., 1993, 17, 18-24.

    Google Scholar

    [13] E. E. Kara, M. Başarır, On compact operators and some Euler $B^{(m)}$-difference sequence spaces, J. Math. Anal. Appl., 2011, 379(2), 499-511. doi: 10.1016/j.jmaa.2011.01.028

    CrossRef Google Scholar

    [14] V. Karakaya, H. Polat, Some new paranormed sequence spaces defined by Euler difference operators, Acta Sci. Math. (Szeged), 2010, 76, 87-100.

    Google Scholar

    [15] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 1981, 24(2), 169-176. doi: 10.4153/CMB-1981-027-5

    CrossRef Google Scholar

    [16] M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 2010, 60(5), 1299-1309. doi: 10.1016/j.camwa.2010.06.010

    CrossRef Google Scholar

    [17] J. Meng, M. Song, Binomial difference sequence spaces of order $m$, Adv. Difference Equ., 2017, 241(2017).

    Google Scholar

    [18] M. Mursaleen, F. Başar, B. Altay, On the Euler sequence spaces which include the spaces $ell _{p}$ and $ell _{infty }$ II, Nonlinear Anal., 2006, 65(3), 707-717. doi: 10.1016/j.na.2005.09.038

    CrossRef Google Scholar

    [19] P. -N. Ng, P. -Y. Lee, Cesàro sequence spaces of non-absolute type, Comment. Math. (Prace Mat.), 1978, 20(2), 429-433.

    Google Scholar

    [20] H. Polat, F. Başar, Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B, Engl. Ed., 2007, 27 (2), 254-266.

    Google Scholar

    [21] M. Stieglitz, H. Tietz, Matrix transformationen von folgenräumen eine ergebnisübersicht, Math. Z., 1977, 154, 1-16. doi: 10.1007/BF01215107

    CrossRef Google Scholar

    [22] C. -S. Wang, On Nörlund sequence spaces, Tamkang J. Math., 1978, 9, 269-274.

    Google Scholar

    [23] A. Wilansky, Summability Throught Functional Analysis, in: North-Holland Mathematics Studies, vol. 85, Elsevier Science Publishers, Amsterdam, Newyork, Oxford, 1984.

    Google Scholar

Article Metrics

Article views(2564) PDF downloads(640) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint