2019 Volume 9 Issue 1
Article Contents

Mugen Huang, Linchao Hu, Bo Zheng. COMPARING THE EFFICIENCY OF WOLBACHIA DRIVEN AEDES MOSQUITO SUPPRESSION STRATEGIES[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 211-230. doi: 10.11948/2019.211
Citation: Mugen Huang, Linchao Hu, Bo Zheng. COMPARING THE EFFICIENCY OF WOLBACHIA DRIVEN AEDES MOSQUITO SUPPRESSION STRATEGIES[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 211-230. doi: 10.11948/2019.211

COMPARING THE EFFICIENCY OF WOLBACHIA DRIVEN AEDES MOSQUITO SUPPRESSION STRATEGIES

  • Corresponding author: Email address:zhengbo611@outlook.com(B. Zheng)
  • Fund Project: The authors were supported by National Research and Development Plan of China (2016YFC1200500), National Natural Science Foundation of China (11631005, 11871174), National Science Foundation of Guangdong Province (2017A030310597), National Program for Changjiang Scholars and Innovative Research Team in University(IRT_16R16) and Department of Education of Guangdong Province(2017KTSCX148)
  • Wolbachia is an endosymbiotic bacterium which manipulates host reproduction by cytoplasmic incompatibility, and restrains the transmission of dengue virus in Aedes mosquitoes. A novel strategy for dengue control involves releasing Wolbachia infected males into nature to suppress wild Aedes mosquito population. We develop a model of delay differential equations, integrating larval density-dependent competition and diapausing eggs, to compare the efficiency of different suppression strategies. The global asymptotical stability of the complete suppression state identifies the releasing amount threshold ascertaining suppression. Based on the experimental data for Aedes albopictus population in Guangzhou, our simulations show that the mosquito density in the highest peak season can be reduced by more than $ 95\% $ when the number of released males is above the releasing threshold. The best time to initiate the suppression is in early March, lasting until the end of June, followed by the parallel releasing policy from July to November. However, the egg bank has neglectable effects on the control of dengue vector in Guangzhou.
    MSC: 92B05, 37N25, 34D23, 92D30
  • 加载中
  • [1] S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, J. M. Drake, J. S. Brownstein, A. G. Hoen, O. Sankoh, M. F. Myers, D. B. George, T. Jaenisch, G. R. W. Wint, C. P. Simmons, T. W. Scott, J. J. Farrar and S. I. Hay, The global distribution and burden of dengue, Nature, 2013, 496, 504-507

    Google Scholar

    [2] E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 2002, 33, 1144-1165. doi: 10.1137/S0036141000376086

    CrossRef Google Scholar

    [3] P. Cailly, A. Tran, T. Balenghien, G. L'Ambert, C. Toty and P. Ezanno, A climate driven abundance model to assess mosquito control strategies, Ecol. Model., 2012, 227, 7-17. doi: 10.1016/j.ecolmodel.2011.10.027

    CrossRef Google Scholar

    [4] E. Caspari and G. S. Watson, On the evolutionary importance of cytoplasmic sterility in mosquitoes, Evolution, 1959, 13, 568-570. doi: 10.1111/evo.1959.13.issue-4

    CrossRef Google Scholar

    [5] D. L. Denlinger and P. A. Armbruster, Mosquito diapause, Annu. Rev. Entomol., 2014, 59, 73-93. doi: 10.1146/annurev-ento-011613-162023

    CrossRef Google Scholar

    [6] L. Gavotte, D. Mercer, R. Vandyke, J. W. Mains and S. L. Dobson, Wolbachia infection and resource competition effects on immature Aedes albopictus (Diptera: Culicidae), J. Med. Entomol., 2009, 46(3), 451-459. doi: 10.1603/033.046.0306

    CrossRef Google Scholar

    [7] P. A. Hancock, V. L. White, A. G. Callahan, C. H. J. Godfray and A. A. Hoffmann, Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia, J. Appl. Ecol., 2016, 53, 785-793. doi: 10.1111/1365-2664.12620

    CrossRef Google Scholar

    [8] L. Hu, M. Tang, Z. Wu, Z. Xi and J. Yu. The threshold infection level for Wolbachia invasion in random environments, J. Diff. Equ., 2019, 266(7): 4377-4393. doi: 10.1016/j.jde.2018.09.035

    CrossRef Google Scholar

    [9] L. Hu, M. Huang, M. Tang, J. Yu and B. Zheng. Wolbachia spread dynamics in multi-regimes of environmental conditions, J. Theor. Biol., 2019, 462: 247-258. doi: 10.1016/j.jtbi.2018.11.009

    CrossRef Google Scholar

    [10] L. Hu, M. Huang, M. Tang, J. Yu and B. Zheng, Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 2015, 106, 32-44. doi: 10.1016/j.tpb.2015.09.003

    CrossRef Google Scholar

    [11] M. Huang, M. Tang and J. Yu, Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 2015, 58, 77-96.

    Google Scholar

    [12] M. Huang, J. Yu, L. Hu and B. Zheng, Qualitative analysis for a Wolbachia infection model with diffusion, Sci. China Math., 2016, 59, 1249-1266. doi: 10.1007/s11425-016-5149-y

    CrossRef Google Scholar

    [13] M. Huang, J. Lou, L. Hu, B. Zheng and J. Yu, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol., 2018, 440, 1-11. doi: 10.1016/j.jtbi.2017.12.012

    CrossRef Google Scholar

    [14] M. J. Keeling, F. M. Jiggins and J. M. Read, The invasion and coexistence of competing Wolbachia strains, Heredity, 2003, 91, 382-388 doi: 10.1038/sj.hdy.6800343

    CrossRef Google Scholar

    [15] Y. Li, F. Kamara, G. Zhou, S. Puthiyakunnon, C. Li, Y. Liu, Y. Zhou, G. Yan and X. Chen, Urbanization inreases Aedes albopictus larval habitats and accelerates mosquito development and survivorshop, PLoS Negl. Trop. Dis., 2014, 8(11), e3301. doi: 10.1371/journal.pntd.0003301

    CrossRef Google Scholar

    [16] H. Lin, T. Liu, T. Song, L. Lin, J. Xiao, J. Lin, J. He, H. Zhong, W. Hu, A. Deng, Z. Peng, W. Ma and Y. Zhang, Community involvement in dengue outbreak control: An integrated rigorous intervention strategy, PLoS Negl. Trop. Dis., 2016, 10(8), e0004919. doi: 10.1371/journal.pntd.0004919

    CrossRef Google Scholar

    [17] Z. Liu, Y. Zhang and Y. Yang, Population dynamics of Aedes (Stegomyia) albopictus (Skuse) under laboratory conditions, Acta Entomol. Sin., 1985, 28(3), 274-280.

    Google Scholar

    [18] F. Liu, C. Zhou and P. Lin, Studies on the population ecology of Aedes albopictus 5. The seasonal abundance of natural population of Aedes albopictus in Guangzhou, Acta Sci. Natur. Universitatis Sunyatseni, 1990, 29(2), 118-122.

    Google Scholar

    [19] F. Liu, C. Yao, P. Lin and C. Zhou, Studies on life table of the natural population of Aedes albopictus, Acta Sci. Natur. Universitatis Sunyatseni, 1992, 31(3), 84-93.

    Google Scholar

    [20] R. A. Ross, N. M. Endersby, H. L. Yeap and A. A. Hoffmann, Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia infected Aedes aegypti, Am. J. Trop. Hyg., 2014, 9(1), 198-205.

    Google Scholar

    [21] H. L. Smith, An introduction to delay differential equations with applications to life sciences, Springer, New York, 2011.https://link.springer.com/book/10.1007%2F978-1-4419-7646-8

    Google Scholar

    [22] A. Tran, G. L'Ambert, G. Lacour, M. Demarchi, M. Cros, P. Cailly, M. A. Kientz, T. Balenghien and P. Ezanno, A rainfall and temperature driven abundance model for Aedes albopictus populations, Int. J. Environ. Res. Public Health, 2013, 10, 1698-1719. doi: 10.3390/ijerph10051698

    CrossRef Google Scholar

    [23] M. Turelli and A. A. Hoffmann, Rapid spread of an inherited incompatibility factor in California Drosophila, Nature, 1991, 353, 440-442. doi: 10.1038/353440a0

    CrossRef Google Scholar

    [24] J. Waldock, N. L. Chandra, J. Lelieveld, Y. Proestos, E. Michael, G. Christophides and P. E. Parham, The role of environment variables on Aedes albopictus biology and Chikungunya epidemiology, Pathogens and Global Health., 2013, 107, 224-240. doi: 10.1179/2047773213Y.0000000100

    CrossRef Google Scholar

    [25] R. K. Walsh, C. Bradley, C. S. Apperson and F. Gould, An experimental field study of delayed density dependence in natural populations of Aedes albopictus, PLoS One, 2012, 7, e35959. doi: 10.1371/journal.pone.0035959

    CrossRef Google Scholar

    [26] R. K. Walsh, L. Facchinelli, J. M. Ramsey, J. G. Bond and F. Gould, Assessing the impact of density dependence in field populations of Aedes aegypti, J. Vect. Ecol., 2011, 36(2), 300-307. doi: 10.1111/jvec.2011.36.issue-2

    CrossRef Google Scholar

    [27] E. Waltz, US reviews plan to infect mosquitoes with bacteria to stop disease, Nature, 2016, 89(1), 450-451.

    Google Scholar

    [28] T. Walker, P. H. Johnson, L. A. Moreika, I. Iturbe-Ormaetxe, F. D. Frentiu, C. J. Mcmeniman, Y. S. Leong, Y. Dong, J. Axford, P. Kriesner, A. L. Lloyd, S. A. Ritchie, S. L. O'Neill and A. A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 2011, 476, 450-453. doi: 10.1038/nature10355

    CrossRef Google Scholar

    [29] WHO, Global strategy for dengue prevention and control 2012-2020, Geneva: World Health Organization, 2012.

    Google Scholar

    [30] J. Wu, Z. Lun, A. A. James and X. Chen, Dengue fever in mainland China, Am. J. Trop. Med. Hyg., 2010, 83(3), 664-671. doi: 10.4269/ajtmh.2010.09-0755

    CrossRef Google Scholar

    [31] Z. Xi, C. C. Khoo and S. L. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, 2005, 310, 326-328. doi: 10.1126/science.1117607

    CrossRef Google Scholar

    [32] J. Yu, Modeling mosqutio population suppression based on delay differential equations, SIAM J. Appl. Math., 2018, 78(6): 3168-3187. doi: 10.1137/18M1204917

    CrossRef Google Scholar

    [33] B. Zheng, M. Tang and J. Yu, Modeling Wolbachia spread in mosquitoes through delay differential equation, SIAM J. Appl. Math., 2014, 74, 743-770. doi: 10.1137/13093354X

    CrossRef Google Scholar

    [34] B. Zheng, M. Tang, J. Yu and J. Qiu, Wolbachia spreading dynamics in mosquitoes with imperfect maternal transmission, J. Math. Biol. 2018, 76: 235-263. doi: 10.1007/s00285-017-1142-5

    CrossRef Google Scholar

    [35] B. Zheng, J. Yu, Z. Xi and M. Tang, The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression, Ecol. Model., 2018, 387: 38-48. doi: 10.1016/j.ecolmodel.2018.09.004

    CrossRef Google Scholar

    [36] Z. Zhong and G. He, The life table of laboratory Aedes albopictus under various temperatures, Academic J. Sun Yat-sen University of Medical Sciences, 1988, 9(3), 35-39.

    Google Scholar

    [37] Z. Zhong and G. He, The life and fertility table of Aedes albopictus under different temperatures, Acta Entom. Sinica, 1990, 33(1), 64-70.

    Google Scholar

Figures(6)  /  Tables(2)

Article Metrics

Article views(2946) PDF downloads(909) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint