2019 Volume 9 Issue 1
Article Contents

Lynn Erbe, Baoguo Jia, Qinqin Zhang. HOMOCLINIC SOLUTIONS OF DISCRETE NONLINEAR SYSTEMS VIA VARIATIONAL METHOD[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 271-294. doi: 10.11948/2019.271
Citation: Lynn Erbe, Baoguo Jia, Qinqin Zhang. HOMOCLINIC SOLUTIONS OF DISCRETE NONLINEAR SYSTEMS VIA VARIATIONAL METHOD[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 271-294. doi: 10.11948/2019.271

HOMOCLINIC SOLUTIONS OF DISCRETE NONLINEAR SYSTEMS VIA VARIATIONAL METHOD

  • Corresponding author: Email address:qqzhang@gzhu.edu.cn(Q. Zhang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11471085, 11271380) and Guangdong Province Key Laboratory of Computational Science
  • Homoclinic solutions arise in various discrete models with variational structure, from discrete nonlinear Schrödinger equations to discrete Hamiltonian systems. In recent years, a lot of interesting results on the homoclinic solutions of difference equations have been obtained. In this paper, we review some recent progress by using critical point theory to study the existence and multiplicity results of homoclinic solutions in some discrete nonlinear systems with variational structure.
    MSC: 39A12, 39A23
  • 加载中
  • [1] R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods, and Applications, second edition, Dekker, New York, 2000.

    Google Scholar

    [2] C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fraction, and Riccati Equations, Kluwer Academic, Dordrecht, 1996.

    Google Scholar

    [3] A. Ambrosetti an. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14(4), 349–381.

    Google Scholar

    [4] S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization, Physica D, 1997, 103(1–4), 201–250. doi: 10.1016/S0167-2789(96)00261-8

    CrossRef Google Scholar

    [5] M. Avci and A. Pankov, Nontrivial solutions of discrete nonlinear equations with variable exponent, J. Math. Anal. Appl., 2015, 431(1), 22–33. doi: 10.1016/j.jmaa.2015.05.056

    CrossRef Google Scholar

    [6] Z. Balanov, C. García-Azpeitia and W. Krawcewicz, On Variational and Topological Methods in Nonlinear Difference Equations, Comm. Pure Appl. Anal., 2018, 17(6), 2813–2844. doi: 10.3934/cpaa.2018133

    CrossRef Google Scholar

    [7] A. Cabada, C. Li and S. Tersian, On homoclinic solutions of a semilinear pLaplacian difference equation with periodic coefcients, Advances in Difference Equations, 2010. DOI: 10.1155/2010/195376.

    Google Scholar

    [8] P. Chen, Existence of homoclinic orbits in discrete Hamiltonian systems without Palais-Smale condition, J. Differ. Equ. Appl., 2013, 19(11), 1781–1794. doi: 10.1080/10236198.2013.777716

    CrossRef Google Scholar

    [9] H. Chen and Z. He, Homoclinic solutions for second order discrete Hamiltonian systems with superquadratic potentials, J. Differ. Equ. Appl., 2013, 19(7), 1147– 1160. doi: 10.1080/10236198.2012.721356

    CrossRef Google Scholar

    [10] H. Chen and Z. He, Homoclinic orbits for second order discrete Hamiltonian systems with general potentials, Differ. Equ. Dyn. Syst., 2015, 23(4), 387–401. doi: 10.1007/s12591-014-0225-7

    CrossRef Google Scholar

    [11] H. Chen and Z. He, Homoclinic solutions for second-order discrete Hamiltonian systems with asymptotically quadratic potentials, Math. Methods Appl. Sci., 2014, 37(16), 2451–2462. doi: 10.1002/mma.v37.16

    CrossRef Google Scholar

    [12] P. Chen and X. He, Existence and multiplicity of homoclinic solutions for second-order nonlinear difference equations with Jacobi operators, Math. Methods Appl. Sci., 2016, 39(18), 5705–5719. doi: 10.1002/mma.v39.18

    CrossRef Google Scholar

    [13] G. Chen and S. Ma, Discrete nonlinear Schrödinger equations with superlinear nonlinearities, Appl. Math. Comput., 2012, 218(9), 5496–5507.

    Google Scholar

    [14] G. Chen and S. Ma, Ground state and geometrically distinct solitons of discrete nonlinear Schrödinger equations with saturable nonlinearities, Stud. Appl. Math., 2013, 131(4), 389–413.

    Google Scholar

    [15] G. Chen and S. Ma, Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or super linear terms, Appl. Math. Comput., 2014, 232, 787–798.

    Google Scholar

    [16] G. Chen, S. Ma and Z.-Q. Wang, Standing waves for discrete Schrödinger equations in infnite lattices with saturable nonlinearities, J. Differ. Equ., 2016, 261(6), 3493–3518. doi: 10.1016/j.jde.2016.05.030

    CrossRef Google Scholar

    [17] G. Chen and M. Schechter, Non-periodic discrete Schrödinger equations: ground state solutions, Z. Angew. Math. Phys., 2016, 67(3), 72.

    Google Scholar

    [18] P. Chen and X. H. Tang, Existence of homoclinic solutions for a class of nonlinear difference equations, Advances in Difference Equations, 2010. DOI: 10.1155/2010/470375.

    Google Scholar

    [19] P. Chen and X. H. Tang, Existence of homoclinic orbits for 2nth-order nonlinear difference equations containing both many advances and retardations, J. Math. Anal. Appl., 2011, 381(2), 485–505. doi: 10.1016/j.jmaa.2011.02.016

    CrossRef Google Scholar

    [20] P. Chen and X. H. Tang, Existence of infnitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation, Appl. Math. Comput., 2011, 217(9), 4408–4415.

    Google Scholar

    [21] P. Chen and X. H. Tang, Existence of homoclinic solutions for some secondorder discrete Hamiltonian systems, J. Differ. Equ. Appl., 2013, 19(4), 633–648. doi: 10.1080/10236198.2012.666239

    CrossRef Google Scholar

    [22] P. Chen, X. H. Tang and R. P. Agarwal, Existence of homoclinic solutions for p-Laplacian Hamiltonian systems on Orlicz sequence spaces, Math. Comput. Model., 2012, 55(3-4), 989–1002. doi: 10.1016/j.mcm.2011.09.025

    CrossRef Google Scholar

    [23] W. Chen and M. Yang, Standing waves for periodic discrete nonlinear Schrödinger equations with asymptotically linear terms, Acta Math. Appl. Sin.- E., 2012, 28(2), 351–360.

    Google Scholar

    [24] W. Chen, M. Yang and Y. Ding, Homoclinic orbits of frst order discrete Hamiltonian systems with super linear terms, Sci. China Math., 2011, 54(12), 2583–2596. doi: 10.1007/s11425-011-4276-8

    CrossRef Google Scholar

    [25] X. Deng and G. Cheng, Homoclinic orbits for second order discrete Hamiltonian systems with potential changing sign, Acta Appl. Math., 2008, 103(3), 301–314.

    Google Scholar

    [26] X. Deng, G. Cheng and H. Shi, Subharmonic solutions and homoclinic orbits of second order discrete Hamiltonian systems with potential changing sign, Comput. Math. Appl., 2009, 58(6), 1198–1206. doi: 10.1016/j.camwa.2009.06.045

    CrossRef Google Scholar

    [27] Y. Ding and S. Li, Homoclinic orbits for the frst-order Hamiltonian systems, J. Math. Anal. Appl., 1995, 189(2), 585–601. doi: 10.1006/jmaa.1995.1037

    CrossRef Google Scholar

    [28] H. Fang and D. Zhao, Existence of nontrivial homoclinic orbits for fourth-order difference equations, Appl. Math. Comput. 2009, 214(1), 163–170.

    Google Scholar

    [29] J. W. Fleischer, M. Segev, N. K. Efremidis and D.N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 2003, 422(6928), 147–150. doi: 10.1038/nature01452

    CrossRef Google Scholar

    [30] J. Graef, L. Kong and M. Wang, Existence of homoclinic solutions for second order difference equations with p-laplacian, Dynamical Systems, Differential Equations and Applications, 2015. DOI:10.3934/proc.2015.0533.

    Google Scholar

    [31] Z. Guo and J. Yu, Existence of periodic and subharmonic solutions for secondorder superlinear difference equations, Sci. China Ser. A: Math., 2003, 46(4), 506–515. doi: 10.1007/BF02884022

    CrossRef Google Scholar

    [32] Z. Guo and J. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J, Lond, Math. Soc., 2003, 68(2), 419–430.

    Google Scholar

    [33] Z. Guo and J. Yu, Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems, Nonlinear Anal.: Real World Appl., 2003, 55(7–8), 969–983.

    Google Scholar

    [34] X. He, Infnitely many homoclinic orbits for 2nth-Order nonlinear functional difference equations involving the p-Laplacian, Abstract and Applied Analysis, 2012. DOI: 10.1155/2012/297618.

    Google Scholar

    [35] Z. He and H. Chen, Multiple homoclinic orbits for second order discrete Hamiltonian systems without symmetric condition, Advances in Difference Equations, 2015. DOI: 10.1186/s13662-015-0545-0.

    Google Scholar

    [36] M. Herrmann, Homoclinic standing waves in focusing DNLS equations, Discret. Contin. Dyn. Syst., 2011, 31(3), 737–752. doi: 10.3934/dcdsa

    CrossRef Google Scholar

    [37] M. Huang and Z. Zhou, On the existence of ground state solutions of the periodic discrete coupled nonlinear Schrödinger lattice, Journal of Applied Mathematics, 2013. DOI: 10.1155/2013/404369.

    Google Scholar

    [38] M. Huang and Z. Zhou, Standing wave solutions for the discrete coupled nonlinear Schrödinger equations with unbounded potentials, Abstract and Applied Analysis, 2013. DOI: 10.1155/2013/842594.

    Google Scholar

    [39] M. Huang and Z. Zhou, Ground state solutions of the periodic discrete coupled nonlinear Schrödinger equations, Math. Methods Appl. Sci., 2015, 38(8), 1682– 1695. doi: 10.1002/mma.v38.8

    CrossRef Google Scholar

    [40] A. Iannizzotto and S. A. Tersian, Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl., 2013, 403(1), 173– 182. doi: 10.1016/j.jmaa.2013.02.011

    CrossRef Google Scholar

    [41] G. James, Centre manifold reduction for quasilinear discrete systems, J. Nonlinear Sci., 2003, 13(1), 27–63.

    Google Scholar

    [42] L. Jia and G. Chen, Discrete Schrödinger equations with sign-changing nonlinearities: Infnitely many homoclinic solutions, J. Math. Anal. Appl., 2017, 452(1), 568–577. doi: 10.1016/j.jmaa.2017.03.022

    CrossRef Google Scholar

    [43] L. Jia, J. Chen and G. Chen, Discrete Schrödinger equations in the nonperiodic and superlinear cases: homoclinic solutions, Advances in Difference Equations, 2017. DOI: 10.1186/s13662-017-1344-6.

    Google Scholar

    [44] L. Kong, Homoclinic solutions for a second order difference equation with pLaplacian, Appl. Math. Comput., 2014, 247, 1113–1121.

    Google Scholar

    [45] G. Kopidakis, S. Aubry and G.P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 2001, 87(16), 165501. doi: 10.1103/PhysRevLett.87.165501

    CrossRef Google Scholar

    [46] W. Krolikowski, B. L. Davies and C. Denz, Photorefractive solitons, IEEE J. Quantum Electron., 2003, 39(1), 3–12. doi: 10.1109/JQE.2002.806190

    CrossRef Google Scholar

    [47] J. Kuang, Existence of homoclinic solutions for higher-order periodic difference equations with p-Laplacian, J. Math. Anal. Appl., 2014, 417(2), 904–917. doi: 10.1016/j.jmaa.2014.03.077

    CrossRef Google Scholar

    [48] J. Kuang and Z. Guo, Homoclinic solutions of a class of periodic difference equations with asymptotically linear nonlinearities, Nonlinear Anal.: Real World Appl., 2013, 89, 208–218.

    Google Scholar

    [49] G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefnit linear part, Commun. Contemp. Math., 2002, 4(4), 763–776. doi: 10.1142/S0219199702000853

    CrossRef Google Scholar

    [50] X. Lin and X. H. Tang, Existence of infnitely many homoclinic orbits in discrete Hamiltonian systems, J. Math. Anal. Appl., 2011, 373(1), 59–72. doi: 10.1016/j.jmaa.2010.06.008

    CrossRef Google Scholar

    [51] G. Lin and Z. Zhou, Homoclinic solutions of a class of nonperiodic discrete nonlinear systems in infnite higher dimensional lattices, Abstract and Applied Analysis, 2014. DOI: 10.1155/2014/436529.

    Google Scholar

    [52] G. Lin and Z. Zhou, Homoclinic solutions in periodic difference equations with mixed nonlinearities, Math. Methods Appl. Sci., 2016, 39(2), 245–260.

    Google Scholar

    [53] G. Lin and Z. Zhou, Homoclinic solutions in non-periodic discrete ϕ-Laplacian equations with mixed nonlinearities, Appl. Math. Lett. 2017, 64, 15–20. doi: 10.1016/j.aml.2016.08.001

    CrossRef Google Scholar

    [54] G. Lin and Z. Zhou, Homoclinic solutions of discrete ϕ-Laplacian equations with mixed nonlinearities, Comm. Pure Appl. Anal., 2018, 17(5), 1723–1747. doi: 10.3934/cpaa.2018082

    CrossRef Google Scholar

    [55] X. Liu, Y. Zhang and H. Shi, Homoclinic orbits and subharmonics for second order p-Laplacian difference equations, J. Appl. Math. Comput., 2013, 43(1–2), 467–478. doi: 10.1007/s12190-013-0673-1

    CrossRef Google Scholar

    [56] X. Liu, Y. Zhang and H. Shi, Homoclinic orbits of second order nonlinear functional difference equations with Jacobi operators, Indag. Math., 2015, 26(1), 75–87.

    Google Scholar

    [57] X. Liu, T. Zhou and H. Shi, Multiplicity of ground state solutions for discrete nonlinear schrödinger equations with unbounded potentials, Electron. J. Differ. Eq., 2017, 2017(14), 1–9.

    Google Scholar

    [58] R. Livi, R. Franzosi and G. L. Oppo, Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation, Phys. Rev. Lett., 2006, 97(6), 060401. doi: 10.1103/PhysRevLett.97.060401

    CrossRef Google Scholar

    [59] Y. Long, Homoclinic orbits for a class of noncoercive discrete hamiltonian systems, Journal of Applied Mathematics, 2012. DOI: 10.1155/2012/720139.

    Google Scholar

    [60] M. Ma and Z. Guo, Homoclinic orbits for second order self-adjoint difference equations, J. Math. Anal. Appl., 2006, 323(1), 513–521. doi: 10.1016/j.jmaa.2005.10.049

    CrossRef Google Scholar

    [61] M. Ma and Z. Guo, Homoclinic orbits and subharmonics for nonlinear second order difference equations, Nonlinear Anal.: Theory Methods Appl., 2007, 67(6), 1737–1745. doi: 10.1016/j.na.2006.08.014

    CrossRef Google Scholar

    [62] S. Ma and Z.-Q. Wang, Multibump solutions for discrete periodic nonlinear Schrödinger equations, Z. Angew. Math. Phys., 2012, 64(5), 1413–1442.

    Google Scholar

    [63] D. Ma and Z. Zhou, Existence and multiplicity results of homoclinic solutions for the DNLS equations with unbounded potentials, Abstract and Applied Analysis, 2012. DOI: 10.1155/2012/703596.

    Google Scholar

    [64] A. Mai and Z. Zhou, Discrete solitons for periodic discrete nonlinear Schrödinger equations, Appl. Math. Comput., 2013, 222, 34–41.

    Google Scholar

    [65] A. Mai and Z. Zhou, Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities, Abstract and Applied Analysis, 2013. DOI: 10.1155/2013/317139.

    Google Scholar

    [66] A. Mai and Z. Zhou, Homoclinic solutions for a class of nonlinear difference equations, Journal of Applied Mathematics, 2014. DOI: 10.1155/2014/749678.

    Google Scholar

    [67] W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Differ. Integral Equ., 1992, 5(5), 1115–1120.

    Google Scholar

    [68] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 2006, 19(1), 27–40.

    Google Scholar

    [69] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations Ⅱ: A generalized Nehari manifold approach, Discret. Contin. Dyn. Syst., 2007, 19(2), 419–430.

    Google Scholar

    [70] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities, J. Math. Anal. Appl., 2010, 371(1), 254–265. doi: 10.1016/j.jmaa.2010.05.041

    CrossRef Google Scholar

    [71] A. Pankov, Standing waves for discrete nonlinear Schrödinger equations: signchanging nonlinearities, Appl. Anal., 2013, 92(2), 308–317.

    Google Scholar

    [72] A. Pankov and G. Zhang, Standing wave solutions for discrete nonlinear schrödinger equations with unbounded potentials and saturable nonlinearity, J. Math. Sci., 2011, 177(1), 71–82.

    Google Scholar

    [73] A. Pankov and V. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. A-Math. Phys. Eng. Sci., 2008, 464(2100), 3219–3236. doi: 10.1098/rspa.2008.0255

    CrossRef Google Scholar

    [74] A. Pankov and N. Zakharchenko, On some discrete variational problems, Acta Appl. Math., 2001, 65(1–3), 295–303.

    Google Scholar

    [75] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, RI, 1968.

    Google Scholar

    [76] M. Schechter, The use of cerami sequences in critical point theory, Abstract and Applied Analysis, 2007. DOI: 10.1155/2007/58948.

    Google Scholar

    [77] M. Schechter and W. Zou, Weak linking theorems and Schrödinger equations with critical Sobolev exponent, ESAIM Control Optim. Calc. Var., 2003, 9(9), 601–619.

    Google Scholar

    [78] H. Shi, X. Liu and Y. Zhang, Homoclinic orbits for second order p-Laplacian difference equations containing both advance and retardation, RACSAM, 2016, 110(1), 65–78. doi: 10.1007/s13398-015-0221-y

    CrossRef Google Scholar

    [79] H. Shi, X. Liu and Y. Zhang, Homoclinic solutions for a class of fourth-order difference equations, Math. Methods Appl. Sci., 2016, 39(10), 2617–2625. doi: 10.1002/mma.v39.10

    CrossRef Google Scholar

    [80] H. Shi and H. Zhang, Existence of gap solitons in periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 2010, 361(2), 411–419. doi: 10.1016/j.jmaa.2009.07.026

    CrossRef Google Scholar

    [81] H. Shi and Y. Zhang, Existence of breathers for discrete nonlinear Schrödinger equations, Appl. Math. Lett., 2015, 50, 111–118. doi: 10.1016/j.aml.2015.06.012

    CrossRef Google Scholar

    [82] R. Stegliński, On sequences of large homoclinic solutions for a difference equations on the integers, Advances in Difference Equations, 2016. DOI: 10.1186/s13662-016-0771-0.

    Google Scholar

    [83] R. Stegliński, On homoclinic solutions for a second order difference equation with p-Laplacian, Discrete Contin. Dyn. Syst.-Ser. B, 2017, 23(1), 487–492.

    Google Scholar

    [84] C. A. Stuart, Locating Cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 2011, 15(2), 569–588.

    Google Scholar

    [85] J. Sun and S. Ma, Multiple solutions for discrete periodic nonlinear Schrödinger equations, J. Math. Phys., 2015, 56, 022110. doi: 10.1063/1.4909527

    CrossRef Google Scholar

    [86] K. Tanaka, Homoclinic orbits in a frst-order superquadratic Hamiltonian system: Convergence of subharmonic orbits, J. Differ. Equ., 1991, 94(2), 315–339.

    Google Scholar

    [87] X. H. Tang, Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta. Math. Sin.-English Ser., 2016, 32(4), 463–473. doi: 10.1007/s10114-016-4262-8

    CrossRef Google Scholar

    [88] X. H. Tang, X. Lin and L. Xiao, Homoclinic solutions for a class of second order discrete Hamiltonian systems, J. Differ. Equ. Appl., 2010, 16(11), 1257–1273. doi: 10.1080/10236190902791635

    CrossRef Google Scholar

    [89] X. H. Tang and X. Lin, Existence and multiplicity of homoclinic solutions for second-order discrete Hamiltonian systems with subquadratic potential, J. Differ. Equ. Appl., 2011, 17(11), 1617–1634. doi: 10.1080/10236191003730514

    CrossRef Google Scholar

    [90] X. H. Tang and X. Lin, Homoclinic solutions for a class of second order discrete Hamiltonian systems, Acta. Math. Sin.-English Ser., 2012, 28(3), 609–622. doi: 10.1007/s10114-012-9233-0

    CrossRef Google Scholar

    [91] X. H. Tang and X. Lin, Infnitely many homoclinic orbits for discrete Hamiltonian systems with subquadratic potential, J. Differ. Equ. Appl., 2013, 19(5), 796–813. doi: 10.1080/10236198.2012.691168

    CrossRef Google Scholar

    [92] X. H. Tang, X. Lin and J. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, Journal of Dynamics and Differential Equations, 2018. DOI: 10.1007/s10884-018-9662-2.

    Google Scholar

    [93] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, American Mathematical Society, Providence, RI, 2000.

    Google Scholar

    [94] X. Wang, Homoclinic orbits for asymptotically linear discrete Hamiltonian systems, Advances in Difference Equations, 2015. DOI: 2015.10.1186/s13662- 015-0390-1.

    Google Scholar

    [95] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.

    Google Scholar

    [96] M. Yang, W. Chen and Y. Ding, Solutions for discrete periodic Schrödinger equations with spectrum 0, Acta Appl. Math., 2010, 110(3), 1475–1488.

    Google Scholar

    [97] J. Yu, H. Shi and Z. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation, J. Math. Anal. Appl., 2009, 352(2), 799–806. doi: 10.1016/j.jmaa.2008.11.043

    CrossRef Google Scholar

    [98] V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials, J. Am. Math. Soc., 1991, 4(4), 693–727. doi: 10.1090/S0894-0347-1991-1119200-3

    CrossRef Google Scholar

    [99] G. Zhang, Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials, J. Math. Phys., 2009, 50(1), 013505.

    Google Scholar

    [100] G. Zhang, Breather solutions of the discrete nonlinear Schrödinger equations with sign changing nonlinearity, J. Math. Phys., 2011, 52(4), 043516.

    Google Scholar

    [101] Q. Zhang, Homoclinic orbits for a class of discrete periodic hamiltonian systems, Proc. Amer. Math. Soc., 2015, 143(7), 3155–3163. doi: 10.1090/proc/2015-143-07

    CrossRef Google Scholar

    [102] Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefnite linear part, Comm. Pure Appl. Anal., 2015, 14(5), 1929–1940. doi: 10.3934/cpaa

    CrossRef Google Scholar

    [103] Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local superquadratic conditions, Comm. Pure Appl. Anal., 2019, 18(1), 425–434. doi: 10.3934/cpaa.2019021

    CrossRef Google Scholar

    [104] G. Zhang and F. Liu, Existence of breather solutions of the DNLS equations with unbounded potentials, Nonlinear Anal.: Theory Methods Appl., 2009, 71(12), e786–e792. doi: 10.1016/j.na.2008.11.071

    CrossRef Google Scholar

    [105] G. Zhang and A. Pankov, Standing waves of the discrete nonlinear schrödinger equations with growing potentials, Commun. Math. Anal., 2008, 5(5), 38–49.

    Google Scholar

    [106] G. Zhang and A. Pankov, Standing wave solutions of the discrete nonlinear Schrödinger equations with unbounded potentials, Ⅱ, Appl. Anal., 2010, 89(9), 1541–1557. doi: 10.1080/00036810902942234

    CrossRef Google Scholar

    [107] X. Zhang and Y. Shi, Homoclinic orbits of a class of second-order difference equations, J. Math. Anal. Appl., 2012, 396(2), 810–828. doi: 10.1016/j.jmaa.2012.07.016

    CrossRef Google Scholar

    [108] Z. Zhou and D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 2015, 58(4), 781–790. doi: 10.1007/s11425-014-4883-2

    CrossRef Google Scholar

    [109] Z. Zhou and J. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differ. Equ. 2010, 249(5), 1199–1212. doi: 10.1016/j.jde.2010.03.010

    CrossRef Google Scholar

    [110] Z. Zhou and J. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta. Math. Sin.-English Ser., 2013, 29(9), 1809–1822. doi: 10.1007/s10114-013-0736-0

    CrossRef Google Scholar

    [111] Z. Zhou, J. Yu and Y. Chen, On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity, Nonlinearity, 2010, 23(23), 1727–1740.

    Google Scholar

    [112] Z. Zhou, J. Yu and Y. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., 2011, 54(1), 83–93.

    Google Scholar

    [113] W. Zou, Variant fountain theorems and their applications, Manuscr. Math., 2001, 104(3), 343–358.

    Google Scholar

Article Metrics

Article views(4213) PDF downloads(850) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint