[1]
|
R. P. Agarwal, Difference Equations and Inequalities, Theory, Methods, and Applications, second edition, Dekker, New York, 2000.
Google Scholar
|
[2]
|
C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fraction, and Riccati Equations, Kluwer Academic, Dordrecht, 1996.
Google Scholar
|
[3]
|
A. Ambrosetti an. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14(4), 349–381.
Google Scholar
|
[4]
|
S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization, Physica D, 1997, 103(1–4), 201–250. doi: 10.1016/S0167-2789(96)00261-8
CrossRef Google Scholar
|
[5]
|
M. Avci and A. Pankov, Nontrivial solutions of discrete nonlinear equations with variable exponent, J. Math. Anal. Appl., 2015, 431(1), 22–33. doi: 10.1016/j.jmaa.2015.05.056
CrossRef Google Scholar
|
[6]
|
Z. Balanov, C. García-Azpeitia and W. Krawcewicz, On Variational and Topological Methods in Nonlinear Difference Equations, Comm. Pure Appl. Anal., 2018, 17(6), 2813–2844. doi: 10.3934/cpaa.2018133
CrossRef Google Scholar
|
[7]
|
A. Cabada, C. Li and S. Tersian, On homoclinic solutions of a semilinear pLaplacian difference equation with periodic coefcients, Advances in Difference Equations, 2010. DOI: 10.1155/2010/195376.
Google Scholar
|
[8]
|
P. Chen, Existence of homoclinic orbits in discrete Hamiltonian systems without Palais-Smale condition, J. Differ. Equ. Appl., 2013, 19(11), 1781–1794. doi: 10.1080/10236198.2013.777716
CrossRef Google Scholar
|
[9]
|
H. Chen and Z. He, Homoclinic solutions for second order discrete Hamiltonian systems with superquadratic potentials, J. Differ. Equ. Appl., 2013, 19(7), 1147– 1160. doi: 10.1080/10236198.2012.721356
CrossRef Google Scholar
|
[10]
|
H. Chen and Z. He, Homoclinic orbits for second order discrete Hamiltonian systems with general potentials, Differ. Equ. Dyn. Syst., 2015, 23(4), 387–401. doi: 10.1007/s12591-014-0225-7
CrossRef Google Scholar
|
[11]
|
H. Chen and Z. He, Homoclinic solutions for second-order discrete Hamiltonian systems with asymptotically quadratic potentials, Math. Methods Appl. Sci., 2014, 37(16), 2451–2462. doi: 10.1002/mma.v37.16
CrossRef Google Scholar
|
[12]
|
P. Chen and X. He, Existence and multiplicity of homoclinic solutions for second-order nonlinear difference equations with Jacobi operators, Math. Methods Appl. Sci., 2016, 39(18), 5705–5719. doi: 10.1002/mma.v39.18
CrossRef Google Scholar
|
[13]
|
G. Chen and S. Ma, Discrete nonlinear Schrödinger equations with superlinear nonlinearities, Appl. Math. Comput., 2012, 218(9), 5496–5507.
Google Scholar
|
[14]
|
G. Chen and S. Ma, Ground state and geometrically distinct solitons of discrete nonlinear Schrödinger equations with saturable nonlinearities, Stud. Appl. Math., 2013, 131(4), 389–413.
Google Scholar
|
[15]
|
G. Chen and S. Ma, Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or super linear terms, Appl. Math. Comput., 2014, 232, 787–798.
Google Scholar
|
[16]
|
G. Chen, S. Ma and Z.-Q. Wang, Standing waves for discrete Schrödinger equations in infnite lattices with saturable nonlinearities, J. Differ. Equ., 2016, 261(6), 3493–3518. doi: 10.1016/j.jde.2016.05.030
CrossRef Google Scholar
|
[17]
|
G. Chen and M. Schechter, Non-periodic discrete Schrödinger equations: ground state solutions, Z. Angew. Math. Phys., 2016, 67(3), 72.
Google Scholar
|
[18]
|
P. Chen and X. H. Tang, Existence of homoclinic solutions for a class of nonlinear difference equations, Advances in Difference Equations, 2010. DOI: 10.1155/2010/470375.
Google Scholar
|
[19]
|
P. Chen and X. H. Tang, Existence of homoclinic orbits for 2nth-order nonlinear difference equations containing both many advances and retardations, J. Math. Anal. Appl., 2011, 381(2), 485–505. doi: 10.1016/j.jmaa.2011.02.016
CrossRef Google Scholar
|
[20]
|
P. Chen and X. H. Tang, Existence of infnitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation, Appl. Math. Comput., 2011, 217(9), 4408–4415.
Google Scholar
|
[21]
|
P. Chen and X. H. Tang, Existence of homoclinic solutions for some secondorder discrete Hamiltonian systems, J. Differ. Equ. Appl., 2013, 19(4), 633–648. doi: 10.1080/10236198.2012.666239
CrossRef Google Scholar
|
[22]
|
P. Chen, X. H. Tang and R. P. Agarwal, Existence of homoclinic solutions for p-Laplacian Hamiltonian systems on Orlicz sequence spaces, Math. Comput. Model., 2012, 55(3-4), 989–1002. doi: 10.1016/j.mcm.2011.09.025
CrossRef Google Scholar
|
[23]
|
W. Chen and M. Yang, Standing waves for periodic discrete nonlinear Schrödinger equations with asymptotically linear terms, Acta Math. Appl. Sin.- E., 2012, 28(2), 351–360.
Google Scholar
|
[24]
|
W. Chen, M. Yang and Y. Ding, Homoclinic orbits of frst order discrete Hamiltonian systems with super linear terms, Sci. China Math., 2011, 54(12), 2583–2596. doi: 10.1007/s11425-011-4276-8
CrossRef Google Scholar
|
[25]
|
X. Deng and G. Cheng, Homoclinic orbits for second order discrete Hamiltonian systems with potential changing sign, Acta Appl. Math., 2008, 103(3), 301–314.
Google Scholar
|
[26]
|
X. Deng, G. Cheng and H. Shi, Subharmonic solutions and homoclinic orbits of second order discrete Hamiltonian systems with potential changing sign, Comput. Math. Appl., 2009, 58(6), 1198–1206. doi: 10.1016/j.camwa.2009.06.045
CrossRef Google Scholar
|
[27]
|
Y. Ding and S. Li, Homoclinic orbits for the frst-order Hamiltonian systems, J. Math. Anal. Appl., 1995, 189(2), 585–601. doi: 10.1006/jmaa.1995.1037
CrossRef Google Scholar
|
[28]
|
H. Fang and D. Zhao, Existence of nontrivial homoclinic orbits for fourth-order difference equations, Appl. Math. Comput. 2009, 214(1), 163–170.
Google Scholar
|
[29]
|
J. W. Fleischer, M. Segev, N. K. Efremidis and D.N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 2003, 422(6928), 147–150. doi: 10.1038/nature01452
CrossRef Google Scholar
|
[30]
|
J. Graef, L. Kong and M. Wang, Existence of homoclinic solutions for second order difference equations with p-laplacian, Dynamical Systems, Differential Equations and Applications, 2015. DOI:10.3934/proc.2015.0533.
Google Scholar
|
[31]
|
Z. Guo and J. Yu, Existence of periodic and subharmonic solutions for secondorder superlinear difference equations, Sci. China Ser. A: Math., 2003, 46(4), 506–515. doi: 10.1007/BF02884022
CrossRef Google Scholar
|
[32]
|
Z. Guo and J. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J, Lond, Math. Soc., 2003, 68(2), 419–430.
Google Scholar
|
[33]
|
Z. Guo and J. Yu, Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems, Nonlinear Anal.: Real World Appl., 2003, 55(7–8), 969–983.
Google Scholar
|
[34]
|
X. He, Infnitely many homoclinic orbits for 2nth-Order nonlinear functional difference equations involving the p-Laplacian, Abstract and Applied Analysis, 2012. DOI: 10.1155/2012/297618.
Google Scholar
|
[35]
|
Z. He and H. Chen, Multiple homoclinic orbits for second order discrete Hamiltonian systems without symmetric condition, Advances in Difference Equations, 2015. DOI: 10.1186/s13662-015-0545-0.
Google Scholar
|
[36]
|
M. Herrmann, Homoclinic standing waves in focusing DNLS equations, Discret. Contin. Dyn. Syst., 2011, 31(3), 737–752. doi: 10.3934/dcdsa
CrossRef Google Scholar
|
[37]
|
M. Huang and Z. Zhou, On the existence of ground state solutions of the periodic discrete coupled nonlinear Schrödinger lattice, Journal of Applied Mathematics, 2013. DOI: 10.1155/2013/404369.
Google Scholar
|
[38]
|
M. Huang and Z. Zhou, Standing wave solutions for the discrete coupled nonlinear Schrödinger equations with unbounded potentials, Abstract and Applied Analysis, 2013. DOI: 10.1155/2013/842594.
Google Scholar
|
[39]
|
M. Huang and Z. Zhou, Ground state solutions of the periodic discrete coupled nonlinear Schrödinger equations, Math. Methods Appl. Sci., 2015, 38(8), 1682– 1695. doi: 10.1002/mma.v38.8
CrossRef Google Scholar
|
[40]
|
A. Iannizzotto and S. A. Tersian, Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl., 2013, 403(1), 173– 182. doi: 10.1016/j.jmaa.2013.02.011
CrossRef Google Scholar
|
[41]
|
G. James, Centre manifold reduction for quasilinear discrete systems, J. Nonlinear Sci., 2003, 13(1), 27–63.
Google Scholar
|
[42]
|
L. Jia and G. Chen, Discrete Schrödinger equations with sign-changing nonlinearities: Infnitely many homoclinic solutions, J. Math. Anal. Appl., 2017, 452(1), 568–577. doi: 10.1016/j.jmaa.2017.03.022
CrossRef Google Scholar
|
[43]
|
L. Jia, J. Chen and G. Chen, Discrete Schrödinger equations in the nonperiodic and superlinear cases: homoclinic solutions, Advances in Difference Equations, 2017. DOI: 10.1186/s13662-017-1344-6.
Google Scholar
|
[44]
|
L. Kong, Homoclinic solutions for a second order difference equation with pLaplacian, Appl. Math. Comput., 2014, 247, 1113–1121.
Google Scholar
|
[45]
|
G. Kopidakis, S. Aubry and G.P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 2001, 87(16), 165501. doi: 10.1103/PhysRevLett.87.165501
CrossRef Google Scholar
|
[46]
|
W. Krolikowski, B. L. Davies and C. Denz, Photorefractive solitons, IEEE J. Quantum Electron., 2003, 39(1), 3–12. doi: 10.1109/JQE.2002.806190
CrossRef Google Scholar
|
[47]
|
J. Kuang, Existence of homoclinic solutions for higher-order periodic difference equations with p-Laplacian, J. Math. Anal. Appl., 2014, 417(2), 904–917. doi: 10.1016/j.jmaa.2014.03.077
CrossRef Google Scholar
|
[48]
|
J. Kuang and Z. Guo, Homoclinic solutions of a class of periodic difference equations with asymptotically linear nonlinearities, Nonlinear Anal.: Real World Appl., 2013, 89, 208–218.
Google Scholar
|
[49]
|
G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefnit linear part, Commun. Contemp. Math., 2002, 4(4), 763–776. doi: 10.1142/S0219199702000853
CrossRef Google Scholar
|
[50]
|
X. Lin and X. H. Tang, Existence of infnitely many homoclinic orbits in discrete Hamiltonian systems, J. Math. Anal. Appl., 2011, 373(1), 59–72. doi: 10.1016/j.jmaa.2010.06.008
CrossRef Google Scholar
|
[51]
|
G. Lin and Z. Zhou, Homoclinic solutions of a class of nonperiodic discrete nonlinear systems in infnite higher dimensional lattices, Abstract and Applied Analysis, 2014. DOI: 10.1155/2014/436529.
Google Scholar
|
[52]
|
G. Lin and Z. Zhou, Homoclinic solutions in periodic difference equations with mixed nonlinearities, Math. Methods Appl. Sci., 2016, 39(2), 245–260.
Google Scholar
|
[53]
|
G. Lin and Z. Zhou, Homoclinic solutions in non-periodic discrete ϕ-Laplacian equations with mixed nonlinearities, Appl. Math. Lett. 2017, 64, 15–20. doi: 10.1016/j.aml.2016.08.001
CrossRef Google Scholar
|
[54]
|
G. Lin and Z. Zhou, Homoclinic solutions of discrete ϕ-Laplacian equations with mixed nonlinearities, Comm. Pure Appl. Anal., 2018, 17(5), 1723–1747. doi: 10.3934/cpaa.2018082
CrossRef Google Scholar
|
[55]
|
X. Liu, Y. Zhang and H. Shi, Homoclinic orbits and subharmonics for second order p-Laplacian difference equations, J. Appl. Math. Comput., 2013, 43(1–2), 467–478. doi: 10.1007/s12190-013-0673-1
CrossRef Google Scholar
|
[56]
|
X. Liu, Y. Zhang and H. Shi, Homoclinic orbits of second order nonlinear functional difference equations with Jacobi operators, Indag. Math., 2015, 26(1), 75–87.
Google Scholar
|
[57]
|
X. Liu, T. Zhou and H. Shi, Multiplicity of ground state solutions for discrete nonlinear schrödinger equations with unbounded potentials, Electron. J. Differ. Eq., 2017, 2017(14), 1–9.
Google Scholar
|
[58]
|
R. Livi, R. Franzosi and G. L. Oppo, Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation, Phys. Rev. Lett., 2006, 97(6), 060401. doi: 10.1103/PhysRevLett.97.060401
CrossRef Google Scholar
|
[59]
|
Y. Long, Homoclinic orbits for a class of noncoercive discrete hamiltonian systems, Journal of Applied Mathematics, 2012. DOI: 10.1155/2012/720139.
Google Scholar
|
[60]
|
M. Ma and Z. Guo, Homoclinic orbits for second order self-adjoint difference equations, J. Math. Anal. Appl., 2006, 323(1), 513–521. doi: 10.1016/j.jmaa.2005.10.049
CrossRef Google Scholar
|
[61]
|
M. Ma and Z. Guo, Homoclinic orbits and subharmonics for nonlinear second order difference equations, Nonlinear Anal.: Theory Methods Appl., 2007, 67(6), 1737–1745. doi: 10.1016/j.na.2006.08.014
CrossRef Google Scholar
|
[62]
|
S. Ma and Z.-Q. Wang, Multibump solutions for discrete periodic nonlinear Schrödinger equations, Z. Angew. Math. Phys., 2012, 64(5), 1413–1442.
Google Scholar
|
[63]
|
D. Ma and Z. Zhou, Existence and multiplicity results of homoclinic solutions for the DNLS equations with unbounded potentials, Abstract and Applied Analysis, 2012. DOI: 10.1155/2012/703596.
Google Scholar
|
[64]
|
A. Mai and Z. Zhou, Discrete solitons for periodic discrete nonlinear Schrödinger equations, Appl. Math. Comput., 2013, 222, 34–41.
Google Scholar
|
[65]
|
A. Mai and Z. Zhou, Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities, Abstract and Applied Analysis, 2013. DOI: 10.1155/2013/317139.
Google Scholar
|
[66]
|
A. Mai and Z. Zhou, Homoclinic solutions for a class of nonlinear difference equations, Journal of Applied Mathematics, 2014. DOI: 10.1155/2014/749678.
Google Scholar
|
[67]
|
W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Differ. Integral Equ., 1992, 5(5), 1115–1120.
Google Scholar
|
[68]
|
A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 2006, 19(1), 27–40.
Google Scholar
|
[69]
|
A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations Ⅱ: A generalized Nehari manifold approach, Discret. Contin. Dyn. Syst., 2007, 19(2), 419–430.
Google Scholar
|
[70]
|
A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities, J. Math. Anal. Appl., 2010, 371(1), 254–265. doi: 10.1016/j.jmaa.2010.05.041
CrossRef Google Scholar
|
[71]
|
A. Pankov, Standing waves for discrete nonlinear Schrödinger equations: signchanging nonlinearities, Appl. Anal., 2013, 92(2), 308–317.
Google Scholar
|
[72]
|
A. Pankov and G. Zhang, Standing wave solutions for discrete nonlinear schrödinger equations with unbounded potentials and saturable nonlinearity, J. Math. Sci., 2011, 177(1), 71–82.
Google Scholar
|
[73]
|
A. Pankov and V. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. A-Math. Phys. Eng. Sci., 2008, 464(2100), 3219–3236. doi: 10.1098/rspa.2008.0255
CrossRef Google Scholar
|
[74]
|
A. Pankov and N. Zakharchenko, On some discrete variational problems, Acta Appl. Math., 2001, 65(1–3), 295–303.
Google Scholar
|
[75]
|
P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, RI, 1968.
Google Scholar
|
[76]
|
M. Schechter, The use of cerami sequences in critical point theory, Abstract and Applied Analysis, 2007. DOI: 10.1155/2007/58948.
Google Scholar
|
[77]
|
M. Schechter and W. Zou, Weak linking theorems and Schrödinger equations with critical Sobolev exponent, ESAIM Control Optim. Calc. Var., 2003, 9(9), 601–619.
Google Scholar
|
[78]
|
H. Shi, X. Liu and Y. Zhang, Homoclinic orbits for second order p-Laplacian difference equations containing both advance and retardation, RACSAM, 2016, 110(1), 65–78. doi: 10.1007/s13398-015-0221-y
CrossRef Google Scholar
|
[79]
|
H. Shi, X. Liu and Y. Zhang, Homoclinic solutions for a class of fourth-order difference equations, Math. Methods Appl. Sci., 2016, 39(10), 2617–2625. doi: 10.1002/mma.v39.10
CrossRef Google Scholar
|
[80]
|
H. Shi and H. Zhang, Existence of gap solitons in periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 2010, 361(2), 411–419. doi: 10.1016/j.jmaa.2009.07.026
CrossRef Google Scholar
|
[81]
|
H. Shi and Y. Zhang, Existence of breathers for discrete nonlinear Schrödinger equations, Appl. Math. Lett., 2015, 50, 111–118. doi: 10.1016/j.aml.2015.06.012
CrossRef Google Scholar
|
[82]
|
R. Stegliński, On sequences of large homoclinic solutions for a difference equations on the integers, Advances in Difference Equations, 2016. DOI: 10.1186/s13662-016-0771-0.
Google Scholar
|
[83]
|
R. Stegliński, On homoclinic solutions for a second order difference equation with p-Laplacian, Discrete Contin. Dyn. Syst.-Ser. B, 2017, 23(1), 487–492.
Google Scholar
|
[84]
|
C. A. Stuart, Locating Cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 2011, 15(2), 569–588.
Google Scholar
|
[85]
|
J. Sun and S. Ma, Multiple solutions for discrete periodic nonlinear Schrödinger equations, J. Math. Phys., 2015, 56, 022110. doi: 10.1063/1.4909527
CrossRef Google Scholar
|
[86]
|
K. Tanaka, Homoclinic orbits in a frst-order superquadratic Hamiltonian system: Convergence of subharmonic orbits, J. Differ. Equ., 1991, 94(2), 315–339.
Google Scholar
|
[87]
|
X. H. Tang, Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta. Math. Sin.-English Ser., 2016, 32(4), 463–473. doi: 10.1007/s10114-016-4262-8
CrossRef Google Scholar
|
[88]
|
X. H. Tang, X. Lin and L. Xiao, Homoclinic solutions for a class of second order discrete Hamiltonian systems, J. Differ. Equ. Appl., 2010, 16(11), 1257–1273. doi: 10.1080/10236190902791635
CrossRef Google Scholar
|
[89]
|
X. H. Tang and X. Lin, Existence and multiplicity of homoclinic solutions for second-order discrete Hamiltonian systems with subquadratic potential, J. Differ. Equ. Appl., 2011, 17(11), 1617–1634. doi: 10.1080/10236191003730514
CrossRef Google Scholar
|
[90]
|
X. H. Tang and X. Lin, Homoclinic solutions for a class of second order discrete Hamiltonian systems, Acta. Math. Sin.-English Ser., 2012, 28(3), 609–622. doi: 10.1007/s10114-012-9233-0
CrossRef Google Scholar
|
[91]
|
X. H. Tang and X. Lin, Infnitely many homoclinic orbits for discrete Hamiltonian systems with subquadratic potential, J. Differ. Equ. Appl., 2013, 19(5), 796–813. doi: 10.1080/10236198.2012.691168
CrossRef Google Scholar
|
[92]
|
X. H. Tang, X. Lin and J. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, Journal of Dynamics and Differential Equations, 2018. DOI: 10.1007/s10884-018-9662-2.
Google Scholar
|
[93]
|
G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, American Mathematical Society, Providence, RI, 2000.
Google Scholar
|
[94]
|
X. Wang, Homoclinic orbits for asymptotically linear discrete Hamiltonian systems, Advances in Difference Equations, 2015. DOI: 2015.10.1186/s13662- 015-0390-1.
Google Scholar
|
[95]
|
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
Google Scholar
|
[96]
|
M. Yang, W. Chen and Y. Ding, Solutions for discrete periodic Schrödinger equations with spectrum 0, Acta Appl. Math., 2010, 110(3), 1475–1488.
Google Scholar
|
[97]
|
J. Yu, H. Shi and Z. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation, J. Math. Anal. Appl., 2009, 352(2), 799–806. doi: 10.1016/j.jmaa.2008.11.043
CrossRef Google Scholar
|
[98]
|
V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials, J. Am. Math. Soc., 1991, 4(4), 693–727. doi: 10.1090/S0894-0347-1991-1119200-3
CrossRef Google Scholar
|
[99]
|
G. Zhang, Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials, J. Math. Phys., 2009, 50(1), 013505.
Google Scholar
|
[100]
|
G. Zhang, Breather solutions of the discrete nonlinear Schrödinger equations with sign changing nonlinearity, J. Math. Phys., 2011, 52(4), 043516.
Google Scholar
|
[101]
|
Q. Zhang, Homoclinic orbits for a class of discrete periodic hamiltonian systems, Proc. Amer. Math. Soc., 2015, 143(7), 3155–3163. doi: 10.1090/proc/2015-143-07
CrossRef Google Scholar
|
[102]
|
Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefnite linear part, Comm. Pure Appl. Anal., 2015, 14(5), 1929–1940. doi: 10.3934/cpaa
CrossRef Google Scholar
|
[103]
|
Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local superquadratic conditions, Comm. Pure Appl. Anal., 2019, 18(1), 425–434. doi: 10.3934/cpaa.2019021
CrossRef Google Scholar
|
[104]
|
G. Zhang and F. Liu, Existence of breather solutions of the DNLS equations with unbounded potentials, Nonlinear Anal.: Theory Methods Appl., 2009, 71(12), e786–e792. doi: 10.1016/j.na.2008.11.071
CrossRef Google Scholar
|
[105]
|
G. Zhang and A. Pankov, Standing waves of the discrete nonlinear schrödinger equations with growing potentials, Commun. Math. Anal., 2008, 5(5), 38–49.
Google Scholar
|
[106]
|
G. Zhang and A. Pankov, Standing wave solutions of the discrete nonlinear Schrödinger equations with unbounded potentials, Ⅱ, Appl. Anal., 2010, 89(9), 1541–1557. doi: 10.1080/00036810902942234
CrossRef Google Scholar
|
[107]
|
X. Zhang and Y. Shi, Homoclinic orbits of a class of second-order difference equations, J. Math. Anal. Appl., 2012, 396(2), 810–828. doi: 10.1016/j.jmaa.2012.07.016
CrossRef Google Scholar
|
[108]
|
Z. Zhou and D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 2015, 58(4), 781–790. doi: 10.1007/s11425-014-4883-2
CrossRef Google Scholar
|
[109]
|
Z. Zhou and J. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differ. Equ. 2010, 249(5), 1199–1212. doi: 10.1016/j.jde.2010.03.010
CrossRef Google Scholar
|
[110]
|
Z. Zhou and J. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta. Math. Sin.-English Ser., 2013, 29(9), 1809–1822. doi: 10.1007/s10114-013-0736-0
CrossRef Google Scholar
|
[111]
|
Z. Zhou, J. Yu and Y. Chen, On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity, Nonlinearity, 2010, 23(23), 1727–1740.
Google Scholar
|
[112]
|
Z. Zhou, J. Yu and Y. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., 2011, 54(1), 83–93.
Google Scholar
|
[113]
|
W. Zou, Variant fountain theorems and their applications, Manuscr. Math., 2001, 104(3), 343–358.
Google Scholar
|