[1]
|
E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 2001, 156, 121–140. doi: 10.1007/s002050100117
CrossRef Google Scholar
|
[2]
|
M. Avci, Solutions to p(x)-Laplace type equations via nonvariational techniques, Opuscula Math., 2018, 38(3), 291–305. doi: 10.7494/OpMath.2018.38.3.291
CrossRef Google Scholar
|
[3]
|
T. Adamowicz and O. Toivanen, Hölder continuity of quasiminimizers with nonstandard growth, Nonlinear Anal., 2015, 125, 433–456. doi: 10.1016/j.na.2015.05.023
CrossRef Google Scholar
|
[4]
|
M. Allaoui and O. Darhouche, Existence and multiplicity results for Dirichlet boundary value problems involving the (p1(x); p2(x))-Laplace operator, Note di Matematica, 2017, 37(1), 69–85.
Google Scholar
|
[5]
|
A. Baalal, Théorie du potentiel pour des opérateurs elliptiques nonlinéaires du second ordre à coefcients discontinus, Potential Analysis., 2001, 15(3), 255– 271.
Google Scholar
|
[6]
|
A. Baalal and A. Qabil, Harnack inequality and continuity of solutions for quasilinear elliptic equations in Sobolev spaces with variable exponent, Nonl. Analysis and Differential Equations, 2014, 2(2), 69–81.
Google Scholar
|
[7]
|
A. Baalal and A. Qabil, The p(.)-obstacle problem for quasilinear elliptic equations in Sobolev spaces with variable exponent, International Journal of Applied Mathematics and Statistics, 2013, 48(18), 57–67.
Google Scholar
|
[8]
|
A. Baalal and A. Qabil, The Keller-Osserman condition for quasilinear elliptic equations in Sobolev spaces with variable exponent, Int. Journal of Math. Analysis, 2014, 8(14), 669–681.
Google Scholar
|
[9]
|
H. Brezis and L. Nirenberg, H1 versus C1 local minimizers, C. R. Acad. Sci. Paris Sér. I Math, 1993, 317(5), 465–472.
Google Scholar
|
[10]
|
M. Chipot, Elliptic equations. An introductory course, Birkhäuser, Verlag AG, 2009.
Google Scholar
|
[11]
|
DV. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces foundations and harmonic Analysis, Springer, Basel, 2013.
Google Scholar
|
[12]
|
L. Diening, P. Harjulehto, P. Hasto and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 2011.
Google Scholar
|
[13]
|
DE. Edmunds and J. Rákosnik, Sobolev embeddings with variable exponent, Studia Mathematica, 2000, 143(3), 267–293. doi: 10.4064/sm-143-3-267-293
CrossRef Google Scholar
|
[14]
|
XL. Fan and D. Zhao, On the spaces Lp(x) and W m; p(x), J. Math. Anal. Appl, 2001, 263, 424–446. doi: 10.1006/jmaa.2000.7617
CrossRef Google Scholar
|
[15]
|
XL. Fan and QH. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems, Nonlinear Anal., 2003, 52, 1843–1852. doi: 10.1016/S0362-546X(02)00150-5
CrossRef Google Scholar
|
[16]
|
XL. Fan, On the sub-supersolution method for p(x)-Laplacian equations, J. Math. Anal. Appl, 2007, 330, 665–682. doi: 10.1016/j.jmaa.2006.07.093
CrossRef Google Scholar
|
[17]
|
Y. Fu, Y. Shan, On the removability of isolated singular points for elliptic equations involving variable exponent, Adv. Nonlinear Anal., 2016, 5(2), 121– 132.
Google Scholar
|
[18]
|
K. Ho, I. Sim, A-priori bounds and existence for solutions of weighted elliptic equations with a convection term, Adv. Nonlinear Anal., 2017, 6(4), 427–445.
Google Scholar
|
[19]
|
V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko, Integral operators in nonstandard function spaces Volume 1: Variable exponent Lebesgue and Amalgam spaces, Springer, Switzerland, 2016.
Google Scholar
|
[20]
|
A. Kristaly, D. Repovs, On the Schrődinger-Maxwell system involving sublinear terms, Nonlinear Anal. Real World Appl., 2012, 13(1), 213–223. doi: 10.1016/j.nonrwa.2011.07.027
CrossRef Google Scholar
|
[21]
|
P. Marcellini, Regularity and existence of solutions of elliptic equations with (p; q)-growth conditions, J. Differ. Equ, 1991, 50(1), 1–30.
Google Scholar
|
[22]
|
V. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal., 2015, 121, 336–369. doi: 10.1016/j.na.2014.11.007
CrossRef Google Scholar
|
[23]
|
V. Rădulescu, D. Repovs, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 2012, 75 (3), 1524– 1530. doi: 10.1016/j.na.2011.01.037
CrossRef Google Scholar
|
[24]
|
V. Rădulescu, D. Repovs, Partial differential equations with variable exponents, Variational methods and qualitative analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
Google Scholar
|
[25]
|
M. Růžička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Math., Springer-Verlag, Berlin, 2000.
Google Scholar
|
[26]
|
U. Sert and K. Soltanov, On solvability of a class of nonlinear elliptic type equation with variable exponent, Journal of Applied Analysis and Computation, 2017, 7, 1139–1160.
Google Scholar
|
[27]
|
I.L. Stancut, I.D. Stircu, Eigenvalue problems for anisotropic equations involving a potential on Orlicz-Sobolev type spaces, Opuscula Math., 2016, 36 (1), 81–101. doi: 10.7494/OpMath.2016.36.1.81
CrossRef Google Scholar
|
[28]
|
Z. Yücedağ, Solutions of nonlinear problems involving p(x)-Laplacian operator, Adv. Nonlinear Anal., 2015, 4, 285–293.
Google Scholar
|
[29]
|
V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk. SSSR Ser. Mat., 1986, 50, 675–710.
Google Scholar
|
[30]
|
V. V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys., 1995, 3, 249–269.
Google Scholar
|