2019 Volume 9 Issue 1
Article Contents

Fangfang Liao, Shapour Heidarkhani, Ghasem A. Afrouzi, Amjad Salari. Critical point approaches to Gradient-Type systems on the Sierpiński Gasket[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 314-331. doi: 10.11948/2019.314
Citation: Fangfang Liao, Shapour Heidarkhani, Ghasem A. Afrouzi, Amjad Salari. Critical point approaches to Gradient-Type systems on the Sierpiński Gasket[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 314-331. doi: 10.11948/2019.314

Critical point approaches to Gradient-Type systems on the Sierpiński Gasket

  • Corresponding author: Email address: sh.heidarkhani@yahoo.com (S. Heidarkhani) 
  • Fund Project: Fang-Fang Liao was supported by the National Natural Science Foundation of China (Grant No. 11701375) and the Natural Science Foundation of Shanghai Normal University (Grant No. SK201709). Ghasem A. Afrouzi and Amjad Salari were supported by Iran National Science Foundation (Grant No. 96014557)
  • We investigate the existence of multiple solutions for parametric quasi-linear systems of the gradient-type on the Sierpiński gasket. We give some new criteria to guarantee that the systems have at least three weak solutions by using a variational method and some critical points theorems due to Ricceri. We extend and improve some recent results. Finally, we give two examples to illustrate the main results.
    MSC: 35J20, 28A80, 35J25, 35J60, 47J30, 49J52
  • 加载中
  • [1] S. Alexander, Some properties of the spectrum of the Sierpiński gasket in a magnetic feld, Phys. Rev. B, 1984, 29, 5504–5508. doi: 10.1103/PhysRevB.29.5504

    CrossRef Google Scholar

    [2] M. T. Barlow and J. Kigami, Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets, J. London Math. Soc., 1997, 56(2), 320–332. doi: 10.1112/jlms.1997.56.issue-2

    CrossRef Google Scholar

    [3] T. Bartsch and D. G. de Figueiredo, Infnitely many solutions of nonlinear elliptic systems, Topics in nonlinear analysis, 51C67, Progr. Nonlinear Differential Equations Appl., 35, Birkhauser, Basel, 1999.

    Google Scholar

    [4] A. Bensedik and M. Bouchekif, On certain nonlinear elliptic systems with indefnite terms, Electron. J. Differential Equations, 2002, 83, 1–16.

    Google Scholar

    [5] L. Boccardo and D. G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 2002, 9, 309–323. doi: 10.1007/s00030-002-8130-0

    CrossRef Google Scholar

    [6] B. Bockelman and R. S. Strichartz, Partial differential equations on products of Sierpiński gaskets, Indiana Univ. Math. J., 2007, 56, 1361–1375. doi: 10.1512/iumj.2007.56.2981

    CrossRef Google Scholar

    [7] G. Bonanno, G. Molica Bisci and V. D. Rădulescu, Qualitative Analysis of Gradient-Type Systems with Oscillatory Nonlinearities on the Sierpiński Gasket, Chin. Ann. Math. Ser. B, 2013, 34(3), 381–398. doi: 10.1007/s11401-013-0772-1

    CrossRef Google Scholar

    [8] Y. Bozhkova and E. Mitidieri, Existence of multiple solutions for quasilinear systems via fbering method, J. Differential Equations, 2003, 190, 239–267.

    Google Scholar

    [9] B. E. Breckner, V. D. Rădulescu and C. Varga, Infnitely many solutions for the Dirichlet problem on the Sierpiński gasket, Anal. Appl., 2011, 9(3), 235–248. doi: 10.1142/S0219530511001844

    CrossRef Google Scholar

    [10] B. E. Breckner, D. Repovš and C. Varga, On the existence of three solutions for the Dirichlet problem on the Sierpiński gasket, Nonlinear Anal., 2010, 73, 2980–2990. doi: 10.1016/j.na.2010.06.064

    CrossRef Google Scholar

    [11] H. Chen and Z. He, New results for perturbed Hamiltonian systems with impulses, Appl. Math. Comput., 2012, 218, 9489–9497.

    Google Scholar

    [12] Ph. Clément, D. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations, 1992, 17, 923– 940. doi: 10.1080/03605309208820869

    CrossRef Google Scholar

    [13] K. J. Falconer, Semilinear PDEs on self-similar fractals, Comm. Math. Phys., 1999, 206, 235–245.

    Google Scholar

    [14] K. J. Falconer and J. Hu, Nonlinear elliptical equations on the Sierpiński gasket, J. Math. Anal. Appl., 1999, 240, 552–573. doi: 10.1006/jmaa.1999.6617

    CrossRef Google Scholar

    [15] M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal., 1992, 1, 1–35. doi: 10.1007/BF00249784

    CrossRef Google Scholar

    [16] S. Goldstein, Random walks and diffusions on fractals, Percolation Theory and Ergodic Theory of Infnite Particle Systems, H. Kesten (ed.), 121-129, IMA Math. Appl., Vol. 8, Springer-Verlag, New York, 1987.

    Google Scholar

    [17] S. Heidarkhani and A. Salari, Existence of three solutions for impulsive perturbed elastic beam fourth-order equations of Kirchhoff-type, Stud. Sci. Math. Hungarica, 2017, 54(1), 119–140.

    Google Scholar

    [18] J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge, 2001.

    Google Scholar

    [19] S. Kusuoka, A diffusion process on a fractal, Probabilistic Methods in Mathematical Physics, Katata/Kyoto, 1985, 251–274, Academic Press, Boston, 1987.

    Google Scholar

    [20] S. M. Kozlov, Harmonization and homogenization on fractals, Comm. Math. Phys., 1993, 153, 339–357.

    Google Scholar

    [21] R. Rammal, A spectrum of harmonic excitations on fractals, J. Phy. Lett., 1984, 45, 191–206.

    Google Scholar

    [22] B. Ricceri, A further three critical points theorem, Nonlinear Anal., 2009, 71, 4151–4157. doi: 10.1016/j.na.2009.02.074

    CrossRef Google Scholar

    [23] B. Ricceri, A three critical points theorem revisited, Nonlinear Anal., 2009, 70, 3084–3089. doi: 10.1016/j.na.2008.04.010

    CrossRef Google Scholar

    [24] B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problem, Math. Comput. Modelling, 2000, 32, 1485–1494. doi: 10.1016/S0895-7177(00)00220-X

    CrossRef Google Scholar

    [25] W. Sierpiński, Sur une courbe dont tout point est un point de ramifcation, Comptes Rendus (Paris), 1915, 160, 302–305.

    Google Scholar

    [26] D. Stancu-Dumitru, Two nontrivial weak solutions for the Dirichlet problem on the Sierpiński gasket, Bull. Aust. Math. Soc., 2012, 85, 395–414. doi: 10.1017/S000497271100298X

    CrossRef Google Scholar

    [27] R. S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc., 1999, 46, 1199–1208.

    Google Scholar

    [28] R. S. Strichartz, Differential Equations on Fractals, A. Tutorial (ed. ), Princeton University Press, Princeton, 2006.

    Google Scholar

    [29] J. Sun, H. Chen, J. J. Nieto and M. Otero-Novoa, The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear Anal., 2010, 72, 4575–4586. doi: 10.1016/j.na.2010.02.034

    CrossRef Google Scholar

    [30] A. Teplyaev, Spectral Analysis on Infnite Sierpiński Gaskets J. Func. Anal., 1998, 159, 537–567. doi: 10.1006/jfan.1998.3297

    CrossRef Google Scholar

Article Metrics

Article views(2830) PDF downloads(747) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint