[1]
|
S. Alexander, Some properties of the spectrum of the Sierpiński gasket in a magnetic feld, Phys. Rev. B, 1984, 29, 5504–5508. doi: 10.1103/PhysRevB.29.5504
CrossRef Google Scholar
|
[2]
|
M. T. Barlow and J. Kigami, Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets, J. London Math. Soc., 1997, 56(2), 320–332. doi: 10.1112/jlms.1997.56.issue-2
CrossRef Google Scholar
|
[3]
|
T. Bartsch and D. G. de Figueiredo, Infnitely many solutions of nonlinear elliptic systems, Topics in nonlinear analysis, 51C67, Progr. Nonlinear Differential Equations Appl., 35, Birkhauser, Basel, 1999.
Google Scholar
|
[4]
|
A. Bensedik and M. Bouchekif, On certain nonlinear elliptic systems with indefnite terms, Electron. J. Differential Equations, 2002, 83, 1–16.
Google Scholar
|
[5]
|
L. Boccardo and D. G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 2002, 9, 309–323. doi: 10.1007/s00030-002-8130-0
CrossRef Google Scholar
|
[6]
|
B. Bockelman and R. S. Strichartz, Partial differential equations on products of Sierpiński gaskets, Indiana Univ. Math. J., 2007, 56, 1361–1375. doi: 10.1512/iumj.2007.56.2981
CrossRef Google Scholar
|
[7]
|
G. Bonanno, G. Molica Bisci and V. D. Rădulescu, Qualitative Analysis of Gradient-Type Systems with Oscillatory Nonlinearities on the Sierpiński Gasket, Chin. Ann. Math. Ser. B, 2013, 34(3), 381–398. doi: 10.1007/s11401-013-0772-1
CrossRef Google Scholar
|
[8]
|
Y. Bozhkova and E. Mitidieri, Existence of multiple solutions for quasilinear systems via fbering method, J. Differential Equations, 2003, 190, 239–267.
Google Scholar
|
[9]
|
B. E. Breckner, V. D. Rădulescu and C. Varga, Infnitely many solutions for the Dirichlet problem on the Sierpiński gasket, Anal. Appl., 2011, 9(3), 235–248. doi: 10.1142/S0219530511001844
CrossRef Google Scholar
|
[10]
|
B. E. Breckner, D. Repovš and C. Varga, On the existence of three solutions for the Dirichlet problem on the Sierpiński gasket, Nonlinear Anal., 2010, 73, 2980–2990. doi: 10.1016/j.na.2010.06.064
CrossRef Google Scholar
|
[11]
|
H. Chen and Z. He, New results for perturbed Hamiltonian systems with impulses, Appl. Math. Comput., 2012, 218, 9489–9497.
Google Scholar
|
[12]
|
Ph. Clément, D. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations, 1992, 17, 923– 940. doi: 10.1080/03605309208820869
CrossRef Google Scholar
|
[13]
|
K. J. Falconer, Semilinear PDEs on self-similar fractals, Comm. Math. Phys., 1999, 206, 235–245.
Google Scholar
|
[14]
|
K. J. Falconer and J. Hu, Nonlinear elliptical equations on the Sierpiński gasket, J. Math. Anal. Appl., 1999, 240, 552–573. doi: 10.1006/jmaa.1999.6617
CrossRef Google Scholar
|
[15]
|
M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal., 1992, 1, 1–35. doi: 10.1007/BF00249784
CrossRef Google Scholar
|
[16]
|
S. Goldstein, Random walks and diffusions on fractals, Percolation Theory and Ergodic Theory of Infnite Particle Systems, H. Kesten (ed.), 121-129, IMA Math. Appl., Vol. 8, Springer-Verlag, New York, 1987.
Google Scholar
|
[17]
|
S. Heidarkhani and A. Salari, Existence of three solutions for impulsive perturbed elastic beam fourth-order equations of Kirchhoff-type, Stud. Sci. Math. Hungarica, 2017, 54(1), 119–140.
Google Scholar
|
[18]
|
J. Kigami, Analysis on Fractals, Cambridge University Press, Cambridge, 2001.
Google Scholar
|
[19]
|
S. Kusuoka, A diffusion process on a fractal, Probabilistic Methods in Mathematical Physics, Katata/Kyoto, 1985, 251–274, Academic Press, Boston, 1987.
Google Scholar
|
[20]
|
S. M. Kozlov, Harmonization and homogenization on fractals, Comm. Math. Phys., 1993, 153, 339–357.
Google Scholar
|
[21]
|
R. Rammal, A spectrum of harmonic excitations on fractals, J. Phy. Lett., 1984, 45, 191–206.
Google Scholar
|
[22]
|
B. Ricceri, A further three critical points theorem, Nonlinear Anal., 2009, 71, 4151–4157. doi: 10.1016/j.na.2009.02.074
CrossRef Google Scholar
|
[23]
|
B. Ricceri, A three critical points theorem revisited, Nonlinear Anal., 2009, 70, 3084–3089. doi: 10.1016/j.na.2008.04.010
CrossRef Google Scholar
|
[24]
|
B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problem, Math. Comput. Modelling, 2000, 32, 1485–1494. doi: 10.1016/S0895-7177(00)00220-X
CrossRef Google Scholar
|
[25]
|
W. Sierpiński, Sur une courbe dont tout point est un point de ramifcation, Comptes Rendus (Paris), 1915, 160, 302–305.
Google Scholar
|
[26]
|
D. Stancu-Dumitru, Two nontrivial weak solutions for the Dirichlet problem on the Sierpiński gasket, Bull. Aust. Math. Soc., 2012, 85, 395–414. doi: 10.1017/S000497271100298X
CrossRef Google Scholar
|
[27]
|
R. S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc., 1999, 46, 1199–1208.
Google Scholar
|
[28]
|
R. S. Strichartz, Differential Equations on Fractals, A. Tutorial (ed. ), Princeton University Press, Princeton, 2006.
Google Scholar
|
[29]
|
J. Sun, H. Chen, J. J. Nieto and M. Otero-Novoa, The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear Anal., 2010, 72, 4575–4586. doi: 10.1016/j.na.2010.02.034
CrossRef Google Scholar
|
[30]
|
A. Teplyaev, Spectral Analysis on Infnite Sierpiński Gaskets J. Func. Anal., 1998, 159, 537–567. doi: 10.1006/jfan.1998.3297
CrossRef Google Scholar
|