2019 Volume 9 Issue 1
Article Contents

Yanggeng Fu. PERSISTENCE OF TRAVELLING WAVEFRONTS IN A GENERALIZED BURGERS-HUXLEY EQUATION WITH LONG-RANGE DIFFUSION[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 363-372. doi: 10.11948/2019.363
Citation: Yanggeng Fu. PERSISTENCE OF TRAVELLING WAVEFRONTS IN A GENERALIZED BURGERS-HUXLEY EQUATION WITH LONG-RANGE DIFFUSION[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 363-372. doi: 10.11948/2019.363

PERSISTENCE OF TRAVELLING WAVEFRONTS IN A GENERALIZED BURGERS-HUXLEY EQUATION WITH LONG-RANGE DIFFUSION

  • Author Bio: Email address: fuyanggeng@hqu.edu.cn
  • Fund Project: The author was supported by National Natural Science Foundation of China (11401229)
  • In this paper, we study the persistence of travelling wavefronts in a generalized Burgers-Huxley equation with long-range diffusion. When the influence of long-range diffusion effect is sufficiently small, we prove the persistence of these waves by using geometric singular perturbation theory. When the influence becomes large, the behavior of these waves can only be investigate numerically. In this case, we find that the solutions lose monotonicity by using Matlab program bvp4c. Some previous results are extended.
    MSC: 34A34, 34C37, 35B25, 74J35
  • 加载中
  • [1] B. Batiha, M. Noorani, I. Hashim, Application of variational iteration method to the generalized Burgers-Huxley equation, Chaos Solitons Fractals, 2008, 36, 660-663. doi: 10.1016/j.chaos.2006.06.080

    CrossRef Google Scholar

    [2] W. Beyn, The numerical computation of connecting orbits in dynamical systems, IMA J. Numer. Anal., 1990, 10, 379-405. doi: 10.1093/imanum/10.3.379

    CrossRef Google Scholar

    [3] D. Cohen, J. Murray, A generalised diffusion model for growth and dispersal in a population, J. Math. Biol., 1981, 12, 237-249. doi: 10.1007/BF00276132

    CrossRef Google Scholar

    [4] M. Darvishi, S. Kheybari, F. Khani, Spectral collocation method and Darvishi's preconditionings to solve the generalized Burgers-Huxley equation, Commun. Nonlinear Sci. Numer. Simulat. 2008, 13, 2091-2103. doi: 10.1016/j.cnsns.2007.05.023

    CrossRef Google Scholar

    [5] X. Deng, Travelling wave solutions for the generalized Burgers-Huxley equation, Appl. Math. Comput., 2008, 204, 733-737.

    Google Scholar

    [6] E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 2000, 277, 212-218. doi: 10.1016/S0375-9601(00)00725-8

    CrossRef Google Scholar

    [7] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 1979, 31, 53-98. doi: 10.1016/0022-0396(79)90152-9

    CrossRef Google Scholar

    [8] R. Fitzhugh, Mathematical models of excitation and propagation in nerve, in: H.P. Schwan (Ed.), Biological Engineering, McGraw-Hill, New York, 1969, 1-85.

    Google Scholar

    [9] Y. Fu, J. Li, Exact stationary-wave solutions in the standard model of the KerrNonlinear optical fiber with the Bragg grating, J. Appl. Anal. Comput., 2017, 7(3), 1177-1184.

    Google Scholar

    [10] H. Gao, R. Zhao, New exact solutions to the generalized Burgers-Huxley equation, Appl. Math. Comput., 2010, 217, 1598-1603.

    Google Scholar

    [11] I. Hashim, M. Noorani, M. Al-Hadidi, Solving the generalized Burgers-Huxley equation using the Adomian decomposition method, Math. Comput. Model. 2006, 43, 1404-1411. doi: 10.1016/j.mcm.2005.08.017

    CrossRef Google Scholar

    [12] F. Hoog, R. Weiss, An approximation theory for boundary value problems on infinite intervals, Computing, 1980, 24, 227-239. doi: 10.1007/BF02281727

    CrossRef Google Scholar

    [13] M. Javidi, A numerical solution of the generalized Burger's-Huxley equation by pseudospectral method and Darvishi's preconditioning, Appl. Math. Comput. 2006, 175, 1619-1628.

    Google Scholar

    [14] C. Jones, Geometric Singular Perturbaton Theory, in: L. Arnold, R. Johnson (Eds), CIME Lectures on Dynamical Systems, Lecture Notes in Mathematics, vol. 1, Springer-Verlag, New York, 1995.

    Google Scholar

    [15] A. Khattak, A computational meshless method for the generalized Burger'sHuxley equation, Appl. Math. Model. 2009, 33, 3718-3729. doi: 10.1016/j.apm.2008.12.010

    CrossRef Google Scholar

    [16] Y. Kyrychko, M. Bartuccelli, K. Blyuss, Persistence of travelling wave solutions of a fourth order diffusion system, J. Comput. Appl. Math., 2005, 176, 433-443. doi: 10.1016/j.cam.2004.07.028

    CrossRef Google Scholar

    [17] H. Lan, K. Wang, Exact solutions for two nonlinear equations: Ⅰ, J. Phys. A: Math. Gen., 1990, 23, 3923-3928. doi: 10.1088/0305-4470/23/17/021

    CrossRef Google Scholar

    [18] J. Li, Notes on exact travelling wave solutions for a long wave-short wave model, J. Appl. Anal. Comput. 2015, 5(1), 138-140.

    Google Scholar

    [19] H. Liu, J. Li, Q. Zhang, Lie symmetry analysis and exact explicit solutions for general Burgers¡¯ equation, J. Comput. Appl. Math., 2009, 228, 1-9. doi: 10.1016/j.cam.2008.06.009

    CrossRef Google Scholar

    [20] J. Satsuma, Topics in soliton theory and exactly solvable nonlinear equations, World Scientific, Singapore, 1987.

    Google Scholar

    [21] L. Shampine, I. Gladwell, S. Thompson, Solving ODEs with MATLAB, Cambridge University Press, 2003.

    Google Scholar

    [22] X. Wang, Z. Zhu, Y. Lu, Solitary wave solutions of the generalized BurgersHuxley equation, J. Phys. A, 1990, 23, 271-274. doi: 10.1088/0305-4470/23/3/011

    CrossRef Google Scholar

    [23] A.I. Volpert, V.A. Volpert, Traveling wave solutions of parabolic systems, in : Translations of Mathematical Monographs, Amer. Math. Soc.£¬ Providence, RhodeIsland, 1994.

    Google Scholar

Figures(2)

Article Metrics

Article views(2101) PDF downloads(581) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint