2019 Volume 9 Issue 1
Article Contents

Liang Zhao, Tingzhu Huang, Liangjian Deng. KRYLOV SUBSPACE METHODS WITH DEFLATION AND BALANCING PRECONDITIONERS FOR LEAST SQUARES PROBLEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 57-74. doi: 10.11948/2019.57
Citation: Liang Zhao, Tingzhu Huang, Liangjian Deng. KRYLOV SUBSPACE METHODS WITH DEFLATION AND BALANCING PRECONDITIONERS FOR LEAST SQUARES PROBLEMS[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 57-74. doi: 10.11948/2019.57

KRYLOV SUBSPACE METHODS WITH DEFLATION AND BALANCING PRECONDITIONERS FOR LEAST SQUARES PROBLEMS

  • Corresponding authors: Email address: tingzhuhuang@126.com (T. Huang);  Email address: liangjian1987112@126.com (L. Deng)
  • Fund Project: The authors were supported by Natural Science Foundation of China (NSFC: 61702083, 61772003, 61876203). The third author was supported by Fundamental Research Funds for the Central Universities (ZYGX2016KYQD142)
  • For solving least squares problems, the CGLS method is a typical method in the point of view of iterative methods. When the least squares problems are ill-conditioned, the convergence behavior of the CGLS method will present a deteriorated result. We expect to select other iterative Krylov subspace methods to overcome the disadvantage of CGLS. Here the GMRES method is a suitable algorithm for the reason that it is derived from the minimal residual norm approach, which coincides with least squares problems. Ken Hayami proposed BAGMRES for solving least squares problems in [GMRES Methods for Least Squares Problems, SIAM J. Matrix Anal. Appl., 31(2010), pp.2400-2430]. The deflation and balancing preconditioners can optimize the convergence rate through modulating spectral distribution. Hence, in this paper we utilize preconditioned iterative Krylov subspace methods with deflation and balancing preconditioners in order to solve ill-conditioned least squares problems. Numerical experiments show that the methods proposed in this paper are better than the CGLS method.
    MSC: 65F10, 65F22
  • 加载中
  • [1] A. Björck, Numerical methods for least squares problems, SIAM, Philadelphia, 1996.

    Google Scholar

    [2] X. Cui, K. Hayami and J.-F. Yin, Greville's method for preconditioning least squares problems, in Proceeding of the ALGORITMY 2009, Podbanské, Slovakia, 2009.

    Google Scholar

    [3] L. J. Deng, T. Z. Huang and X. L. Zhao, Wavelet-based two-level methods for image restoration, Commu. Nonlinear Sci. and Num. Simu., 2012, 17, 5079-5087. doi: 10.1016/j.cnsns.2012.04.001

    CrossRef Google Scholar

    [4] Y. A. Erlangga and R. Nabben, Deflation and balancing preconditioners for Krylov subspace methods applied to nonsymmetric matrices, SIAM J. Matrix Anal. Appl., 2008, 30, 684-699. doi: 10.1137/060678257

    CrossRef Google Scholar

    [5] Y. A. Erlangga and R. Nabben, Multilevel projection-based nested Krylov iteration for boundary value problems, SIAM J. Sci. Comput., 2008, 30, 1572-1595. doi: 10.1137/070684550

    CrossRef Google Scholar

    [6] J. Frank and C. Vuik, On the construction of deflation-based preconditioners, SIAM J. Sci. Comput., 2001, 23, 442-462. doi: 10.1137/S1064827500373231

    CrossRef Google Scholar

    [7] R. Fletcher, Conjugate gradient methods for indefinite systems, Springer-Verlag, Berlin-Heidelberg-New York, 1976.

    Google Scholar

    [8] J. Huang, T. Z. Huang, X. L. Zhao, Z. Xu and X. G. Lv, Two soft-thresholding based iterative algorithms for image deblurring, Infor. Sci., 2014, 271, 179-195. doi: 10.1016/j.ins.2014.02.089

    CrossRef Google Scholar

    [9] K. Hayami and T. Ito, Solution of least squares problems using GMRES methods, Proc. Inst. Statist. Math., 2005, 53, 331-348 (in Japanese).

    Google Scholar

    [10] K. Hayami, J. Yin and T. Ito, GMRES Methods for least squares problems, SIAM J. Matrix Anal. Appl., 2010, 31, 2400-2430. doi: 10.1137/070696313

    CrossRef Google Scholar

    [11] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    Google Scholar

    [12] T. Ito and K. Hayami, Preconditioned GMRES methods for least squares problems, Japan. J. Indust. Appl. Math., 2008, 25, 185-207. doi: 10.1007/BF03167519

    CrossRef Google Scholar

    [13] J. Mandel, Balancing domain decomposition, Comm. Numer. Methods Engrg., 1993, 9, 233-241. doi: 10.1002/cnm.1640090307

    CrossRef Google Scholar

    [14] L. Mansfield, Damped Jacobi preconditioning and coarse grid deflation for conjugate gradient iteration on parallel computers, SIAM J. Sci. Statist. Comput., 1991, 12, 1314-1323. doi: 10.1137/0912071

    CrossRef Google Scholar

    [15] R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problems, SIAM J. Numer. Anal., 1987, 24, 355-365. doi: 10.1137/0724027

    CrossRef Google Scholar

    [16] R. Nabben and C. Vuik, A comparision of deflation and balancing preconditioner, SIAM J. Sci.Comput., 2006, 27, 1742-1759. doi: 10.1137/040608246

    CrossRef Google Scholar

    [17] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of liear equations, SIAM J. Numer. Anal., 1975, 12, 617-629. doi: 10.1137/0712047

    CrossRef Google Scholar

    [18] D. L. Sun, T. Z. Huang, B. Carpentieri and Y. F. Jing, A new shifted block GMRES method with inexact breakdowns for solving multi-shifted and multiple right-hand sides linear systems, J. Sci. Comp., 2018. DOI: 10.1007/s10915-018-0787-6.

    CrossRef Google Scholar

    [19] D. L. Sun, T. Z. Huang, Y. F. Jing and B. Carpentieri, A block GMRES method with deflated restarting for solving linear systems with multiple shifts and multiple right-hand sides, Num. Linear Alg. with App., 2018. DOI: 10.1002/nla.2148.

    CrossRef Google Scholar

    [20] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.

    Google Scholar

    [21] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 1986, 7, 865-869.

    Google Scholar

    [22] H. A. Van Der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, Cambridge, UK, 2003.

    Google Scholar

    [23] R. Weiss, Error-minimizing Krylov subspace methods, SIAM J. Sci. Comput., 1994, 15, 511-527. doi: 10.1137/0915034

    CrossRef Google Scholar

    [24] L. Zhao, T. Z. Huang, Y. F. Jing and L. J. Deng, A generalized product-type BiCOR method and its application in signal deconvolution, Computer & Math. with App., 2013, 66, 1372-1388.

    Google Scholar

    [25] L. Zhao, T. Z. Huang, L. Zhu and L. J. Deng, Golub-Kahan-Lanczos based preconditioner for least squares problems in overdetermined and underdetermined cases, J. Comput. Ana. & App., 2017, 23.

    Google Scholar

    [26] X. L. Zhao, W. Wang, T. Y. Zeng, T. Z. Huang and M. K. Ng, Total variation structured total least squares method for image restoration, SIAM J. Sci. Comp., 2013, 35, 1304šC-1320. doi: 10.1137/130915406

    CrossRef Google Scholar

    [27] X. L. Zhao, F. Wang and M. K. Ng, A new convex optimization model for multiplicative noise and blur removal, SIAM J. Imag. Sci., 2014, 7, 456-475. doi: 10.1137/13092472X

    CrossRef Google Scholar

    [28] X. L. Zhao, T. Z. Huang, X. G. Lv, Z. B. Xu and J. Huang, Kronecker product approximations for image restoration with new mean boundary conditions, App. Math. Model., 2012, 36, 225-237. doi: 10.1016/j.apm.2011.05.050

    CrossRef Google Scholar

Figures(6)

Article Metrics

Article views(3118) PDF downloads(826) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint