[1]
|
A. Björck, Numerical methods for least squares problems, SIAM, Philadelphia, 1996.
Google Scholar
|
[2]
|
X. Cui, K. Hayami and J.-F. Yin, Greville's method for preconditioning least squares problems, in Proceeding of the ALGORITMY 2009, Podbanské, Slovakia, 2009.
Google Scholar
|
[3]
|
L. J. Deng, T. Z. Huang and X. L. Zhao, Wavelet-based two-level methods for image restoration, Commu. Nonlinear Sci. and Num. Simu., 2012, 17, 5079-5087. doi: 10.1016/j.cnsns.2012.04.001
CrossRef Google Scholar
|
[4]
|
Y. A. Erlangga and R. Nabben, Deflation and balancing preconditioners for Krylov subspace methods applied to nonsymmetric matrices, SIAM J. Matrix Anal. Appl., 2008, 30, 684-699. doi: 10.1137/060678257
CrossRef Google Scholar
|
[5]
|
Y. A. Erlangga and R. Nabben, Multilevel projection-based nested Krylov iteration for boundary value problems, SIAM J. Sci. Comput., 2008, 30, 1572-1595. doi: 10.1137/070684550
CrossRef Google Scholar
|
[6]
|
J. Frank and C. Vuik, On the construction of deflation-based preconditioners, SIAM J. Sci. Comput., 2001, 23, 442-462. doi: 10.1137/S1064827500373231
CrossRef Google Scholar
|
[7]
|
R. Fletcher, Conjugate gradient methods for indefinite systems, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
Google Scholar
|
[8]
|
J. Huang, T. Z. Huang, X. L. Zhao, Z. Xu and X. G. Lv, Two soft-thresholding based iterative algorithms for image deblurring, Infor. Sci., 2014, 271, 179-195. doi: 10.1016/j.ins.2014.02.089
CrossRef Google Scholar
|
[9]
|
K. Hayami and T. Ito, Solution of least squares problems using GMRES methods, Proc. Inst. Statist. Math., 2005, 53, 331-348 (in Japanese).
Google Scholar
|
[10]
|
K. Hayami, J. Yin and T. Ito, GMRES Methods for least squares problems, SIAM J. Matrix Anal. Appl., 2010, 31, 2400-2430. doi: 10.1137/070696313
CrossRef Google Scholar
|
[11]
|
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
Google Scholar
|
[12]
|
T. Ito and K. Hayami, Preconditioned GMRES methods for least squares problems, Japan. J. Indust. Appl. Math., 2008, 25, 185-207. doi: 10.1007/BF03167519
CrossRef Google Scholar
|
[13]
|
J. Mandel, Balancing domain decomposition, Comm. Numer. Methods Engrg., 1993, 9, 233-241. doi: 10.1002/cnm.1640090307
CrossRef Google Scholar
|
[14]
|
L. Mansfield, Damped Jacobi preconditioning and coarse grid deflation for conjugate gradient iteration on parallel computers, SIAM J. Sci. Statist. Comput., 1991, 12, 1314-1323. doi: 10.1137/0912071
CrossRef Google Scholar
|
[15]
|
R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problems, SIAM J. Numer. Anal., 1987, 24, 355-365. doi: 10.1137/0724027
CrossRef Google Scholar
|
[16]
|
R. Nabben and C. Vuik, A comparision of deflation and balancing preconditioner, SIAM J. Sci.Comput., 2006, 27, 1742-1759. doi: 10.1137/040608246
CrossRef Google Scholar
|
[17]
|
C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of liear equations, SIAM J. Numer. Anal., 1975, 12, 617-629. doi: 10.1137/0712047
CrossRef Google Scholar
|
[18]
|
D. L. Sun, T. Z. Huang, B. Carpentieri and Y. F. Jing, A new shifted block GMRES method with inexact breakdowns for solving multi-shifted and multiple right-hand sides linear systems, J. Sci. Comp., 2018. DOI: 10.1007/s10915-018-0787-6.
CrossRef Google Scholar
|
[19]
|
D. L. Sun, T. Z. Huang, Y. F. Jing and B. Carpentieri, A block GMRES method with deflated restarting for solving linear systems with multiple shifts and multiple right-hand sides, Num. Linear Alg. with App., 2018. DOI: 10.1002/nla.2148.
CrossRef Google Scholar
|
[20]
|
Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
Google Scholar
|
[21]
|
Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 1986, 7, 865-869.
Google Scholar
|
[22]
|
H. A. Van Der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, Cambridge, UK, 2003.
Google Scholar
|
[23]
|
R. Weiss, Error-minimizing Krylov subspace methods, SIAM J. Sci. Comput., 1994, 15, 511-527. doi: 10.1137/0915034
CrossRef Google Scholar
|
[24]
|
L. Zhao, T. Z. Huang, Y. F. Jing and L. J. Deng, A generalized product-type BiCOR method and its application in signal deconvolution, Computer & Math. with App., 2013, 66, 1372-1388.
Google Scholar
|
[25]
|
L. Zhao, T. Z. Huang, L. Zhu and L. J. Deng, Golub-Kahan-Lanczos based preconditioner for least squares problems in overdetermined and underdetermined cases, J. Comput. Ana. & App., 2017, 23.
Google Scholar
|
[26]
|
X. L. Zhao, W. Wang, T. Y. Zeng, T. Z. Huang and M. K. Ng, Total variation structured total least squares method for image restoration, SIAM J. Sci. Comp., 2013, 35, 1304šC-1320. doi: 10.1137/130915406
CrossRef Google Scholar
|
[27]
|
X. L. Zhao, F. Wang and M. K. Ng, A new convex optimization model for multiplicative noise and blur removal, SIAM J. Imag. Sci., 2014, 7, 456-475. doi: 10.1137/13092472X
CrossRef Google Scholar
|
[28]
|
X. L. Zhao, T. Z. Huang, X. G. Lv, Z. B. Xu and J. Huang, Kronecker product approximations for image restoration with new mean boundary conditions, App. Math. Model., 2012, 36, 225-237. doi: 10.1016/j.apm.2011.05.050
CrossRef Google Scholar
|