2019 Volume 9 Issue 1
Article Contents

Pouria Assari. A MESHLESS LOCAL GALERKIN METHOD FOR THE NUMERICAL SOLUTION OF HAMMERSTEIN INTEGRAL EQUATIONS BASED ON THE MOVING LEAST SQUARES TECHNIQUE[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 75-104. doi: 10.11948/2019.75
Citation: Pouria Assari. A MESHLESS LOCAL GALERKIN METHOD FOR THE NUMERICAL SOLUTION OF HAMMERSTEIN INTEGRAL EQUATIONS BASED ON THE MOVING LEAST SQUARES TECHNIQUE[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 75-104. doi: 10.11948/2019.75

A MESHLESS LOCAL GALERKIN METHOD FOR THE NUMERICAL SOLUTION OF HAMMERSTEIN INTEGRAL EQUATIONS BASED ON THE MOVING LEAST SQUARES TECHNIQUE

  • In this paper, a computational scheme is proposed to estimate the solution of one- and two-dimensional Fredholm-Hammerstein integral equations of the second kind. The method approximates the solution using the discrete Galerkin method based on the moving least squares (MLS) approach as a locally weighted least squares polynomial fitting. The discrete Galerkin technique for integral equations results from the numerical integration of all integrals in the system corresponding to the Galerkin method. Since the proposed method is constructed on a set of scattered points, it does not require any background meshes and so we can call it as the meshless local discrete Galerkin method. The implication of the scheme for solving two-dimensional integral equations is independent of the geometry of the domain. The new method is simple, efficient and more flexible for most classes of nonlinear integral equations. The error analysis of the method is provided. The convergence accuracy of the new technique is tested over several Hammerstein integral equations and obtained results confirm the theoretical error estimates.
    MSC: 65D10, 45G99, 65G99
  • 加载中
  • [1] M. A. Abdou, A. A. Badr and M. B. Soliman, On a method for solving a two-dimensional nonlinear integral equation of the second kind, J. Comput. Appl. Math., 2011, 235(12), 3589-3598. doi: 10.1016/j.cam.2011.02.016

    CrossRef Google Scholar

    [2] H. Adibi and P. Assari, On the numerical solution of weakly singular Fredholm integral equations of the second kind using Legendre wavelets, J. Vib. Control., 2011, 17(5), 689-698.

    Google Scholar

    [3] A. Alipanah and S. Esmaeili, Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function, J. Comput. Appl. Math., 2011, 235(18), 5342-5347. doi: 10.1016/j.cam.2009.11.053

    CrossRef Google Scholar

    [4] M. G. Armentano, Error estimates in Sobolev spaces for moving least square approximations, SIAM J. Numer. Anal., 2002, 39(1), 38-51.

    Google Scholar

    [5] M. G. Armentano and R. G. Duron, Error estimates for moving least square approximations, Appl. Numer. Math., 2001, 37(3), 397-416. doi: 10.1016/S0168-9274(00)00054-4

    CrossRef Google Scholar

    [6] P. Assari, H. Adibi and M. Dehghan, A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis., J. Comput. Appl. Math., 2013, 239(1), 72-92.

    Google Scholar

    [7] P. Assari, H. Adibi and M. Dehghan, A numerical method for solving linear integral equations of the second kind on the non-rectangular domains based on the meshless method, Appl. Math. Model., 2013, 37(22), 9269-9294. doi: 10.1016/j.apm.2013.04.047

    CrossRef Google Scholar

    [8] P. Assari, H. Adibi and M. Dehghan, A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels, J. Comput. Appl. Math., 2014, 267, 160-181. doi: 10.1016/j.cam.2014.01.037

    CrossRef Google Scholar

    [9] P. Assari, H. Adibi and M. Dehghan, A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains, Numer. Algor., 2014, 67(2), 423-455. doi: 10.1007/s11075-013-9800-1

    CrossRef Google Scholar

    [10] P. Assari, H. Adibi and M. Dehghan, The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis, Appl. Numer. Math., 2014, 81, 76-93. doi: 10.1016/j.apnum.2014.02.013

    CrossRef Google Scholar

    [11] P. Assari and M. Dehghan, A meshless discrete Galerkin method based on the free shape parameter radial basis functions for solving Hammerstein integral equations, Numer. Math. Theor. Meth. Appl., 2018, 11, 541-569.

    Google Scholar

    [12] P. Assari and M. Dehghan, The numerical solution of two-dimensional logarithmic integral equations on normal domains using radial basis functions with polynomial precision, Eng. Comput., 2017. DOI: 10.1007/s00366-017-0502-5.

    CrossRef Google Scholar

    [13] K. E. Atkinson, The numerical evaluation of fixed points for completely continuous operators, SIAM J. Numer. Anal., 1973, 10, 799-807. doi: 10.1137/0710065

    CrossRef Google Scholar

    [14] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, Cambridge, 1997.

    Google Scholar

    [15] K. E. Atkinson and A. Bogomolny, The discrete Galerkin method for integral equations, Math. Comp., 1987, 48, 595-616. doi: 10.1090/S0025-5718-1987-0878693-6

    CrossRef Google Scholar

    [16] K. E. Atkinson and J. Flores, The discrete collocation method for nonlinear integral equations, IMA J. Numer. Anal., 1993, 13(2), 195-213.

    Google Scholar

    [17] E. Babolian, S. Bazm and P. Lima, Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions, Commun. Nonlinear. Sci. Numer. Simulat., 2011, 16(3), 1164-1175. doi: 10.1016/j.cnsns.2010.05.029

    CrossRef Google Scholar

    [18] S. Bazm and E. Babolian, Numerical solution of nonlinear two-dimensional Fredholm integral equations of the second kind using gauss product quadrature rules, Commun. Nonlinear. Sci. Numer. Simulat., 2012, 17(3), 1215-1223. doi: 10.1016/j.cnsns.2011.08.017

    CrossRef Google Scholar

    [19] M. D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge University Press, Cambridge, 2003.

    Google Scholar

    [20] V. Carutasu, Numerical solution of two-dimensional nonlinear Fredholm integral equations of the second kind by spline functions, General. Math., 2001, 9, 31-48.

    Google Scholar

    [21] W. Chen and W. Lin, Galerkin trigonometric wavelet methods for the natural boundary integral equations, Appl. Math. Comput., 2001, 121(1), 75-92.

    Google Scholar

    [22] P. Dasa, G. Nelakantia and G. Longb, Discrete Legendre spectral projection methods for Fredholm-Hammerstein integral equations, J. Comput. Appl. Math., 2015, 278, 293-305. doi: 10.1016/j.cam.2014.10.012

    CrossRef Google Scholar

    [23] M. Dehghan and R. Salehi, The numerical solution of the non-linear integro-differential equations based on the meshless method, J. Comput. Appl. Math., 2012, 236(9), 2367-2377. doi: 10.1016/j.cam.2011.11.022

    CrossRef Google Scholar

    [24] W. Fang, Y. Wang and Y. Xu, An implementation of fast wavelet Galerkin methods for integral equations of the second kind, J. Sci. Comput., 2004, 20(2), 277-302.

    Google Scholar

    [25] R. Farengo, Y.C. Lee and P.N. Guzdar, An electromagnetic integral equation: Application to microtearing modes, Phys. Fluids, 1983, 26(12), 3515-3523. doi: 10.1063/1.864112

    CrossRef Google Scholar

    [26] G. E. Fasshauer, Meshfree methods, In: Handbook of Theoretical and Computational Nanotechnology, American Scientific Publishers, 2005.

    Google Scholar

    [27] A. Golbabai and S. Seifollahi, Numerical solution of the second kind integral equations using radial basis function networks, Appl. Math. Comput., 2006, 174(2), 877-883.

    Google Scholar

    [28] I. G. Graham, Collocation methods for two dimensional weakly singular integral equations, J. Austral. Math. Soc. (Series B), 1993, 22, 456-473.

    Google Scholar

    [29] L. Grammonta, P. B. Vasconcelos and M. Ahuesa, A modified iterated projection method adapted to a nonlinear integral equation, Appl. Math. Comput., 2016, 276, 432-441.

    Google Scholar

    [30] H. Guoqiang and W. Jiong, Extrapolation of Nystrom solution for two dimensional nonlinear Fredholm integral equations, J. Comput. Appl. Math., 2001, 134(1-2), 259-268. doi: 10.1016/S0377-0427(00)00553-7

    CrossRef Google Scholar

    [31] H. Guoqiang and W. Jiong., Richardson extrapolation of iterated discrete Galerkin solution for two-dimensional Fredholm integral equations, J. Comput. Appl. Math., 2002, 139, 49-63. doi: 10.1016/S0377-0427(01)00390-9

    CrossRef Google Scholar

    [32] H. Guoqiang, W. Jiong, K. Hayami and X. Yuesheng, Correction method and extrapolation method for singular two-point boundary value problems, J. Comput. Appl. Math., 2000, 126(1-2), 145-157. doi: 10.1016/S0377-0427(99)00349-0

    CrossRef Google Scholar

    [33] R. Hanson and J. Phillips, Numerical solution of two-dimensional integral equations using linear elements source, SIAM J. Numer. Anal., 1978, 15, 113-121. doi: 10.1137/0715007

    CrossRef Google Scholar

    [34] H. Kaneko and Y. Xu, Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind, Math. Comp., 1994, 62(206), 739-753. doi: 10.1090/S0025-5718-1994-1218345-X

    CrossRef Google Scholar

    [35] H. Kaneko and Y. Xu, Superconvergence of the iterated Galerkin methods for Hammerstein equations, SIAM J. Numer. Anal., 1996, 33(3), 1048-1064.

    Google Scholar

    [36] B. Kress, Linear Integral Equations, Springer-Verlag, Berlin, 1989.

    Google Scholar

    [37] S. Kumar, A discrete collocation-type method for Hammerstein equations, SIAM J. Numer. Anal., 1998, 25(2), 328-341.

    Google Scholar

    [38] S. Kumar and I. H. Sloan, A new collocation type method for Hammerstein integral equations, Math. Comput., 1987, 48(178), 585-593. doi: 10.1090/S0025-5718-1987-0878692-4

    CrossRef Google Scholar

    [39] P. Lancaster and K. Salkauskas, Surfaces generated by moving least squares methods, Math. Comput., 1981, 37(155), 141-158. doi: 10.1090/S0025-5718-1981-0616367-1

    CrossRef Google Scholar

    [40] X. Li, Meshless Galerkin algorithms for boundary integral equations with moving least square approximations, Appl. Numer. Math., 2011, 61(12), 1237-1256. doi: 10.1016/j.apnum.2011.08.003

    CrossRef Google Scholar

    [41] X. Li and J. Zhu, A Galerkin boundary node method and its convergence analysis, J. Comput. Appl. Math., 2009, 230(1), 314-328.

    Google Scholar

    [42] X. Li and Q. Wang, Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases, Eng. Anal. Bound. Elem., 20169, 73, 21-34.

    Google Scholar

    [43] X. Li, H. Chen and Y. Wang, Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method, Appl. Math. Comput., 2015, 262, 56-78.

    Google Scholar

    [44] A. V. Manzhirov, On a method of solving two-dimensional integral equations of axisymmetric contact problems for bodies with complex rheology, J. Appl. Math. Mech., 1985, 49(6), 777-782. doi: 10.1016/0021-8928(85)90016-4

    CrossRef Google Scholar

    [45] D. Mirzaei and M. Dehghan, A meshless based method for solution of integral equations, Appl. Numer. Math., 2010, 60(3), 245-262. doi: 10.1016/j.apnum.2009.12.003

    CrossRef Google Scholar

    [46] Y. Ordokhani, Solution of Fredholm-Hammerstein integral equations with walsh-hybrid functions, Int. Math. Forum., 2009, 4, 969-976.

    Google Scholar

    [47] K. Parand and J. A. Rad, Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions, Appl. Math. Comput., 2012, 218(9), 5292-5309.

    Google Scholar

    [48] A. Pedas and G. Vainikko, Product integration for weakly singular integral equations in $m$ dimensional space, In: B.Bertram, C.Constanda, A.Struthers (Ed.), Integral Methods in Science and Engineering, 280-285, Chapman and Hall/CRC, 2000.

    Google Scholar

    [49] A. Quarteroni, R. Sacco and F. Saleri, Numerical Analysis for Electromagnetic Integral Equations, Artech House, Boston, 2008.

    Google Scholar

    [50] A. Tari, M. Y. Rahimi, S. Shahmorad and F. Talati, Solving a class of two-dimensional linear and nonlinear Volterra integral equations by the differential transform method, J. Comput. Appl. Math., 2009, 228(1), 70-76.

    Google Scholar

    [51] A. M. Wazwaz, Linear and Nonlinear Integral equations: Methods and Applications, Higher Education Press and Springer Verlag, Heidelberg, 2011.

    Google Scholar

    [52] H. Wendland, Scattered Data Approximation, Cambridge University Press, New York, 2005.

    Google Scholar

Figures(12)  /  Tables(10)

Article Metrics

Article views(3397) PDF downloads(1174) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint