2020 Volume 10 Issue 2
Article Contents

Xue-yong Zhou, Xiang-yun Shi, Jing-an Cui. DYNAMIC BEHAVIOR OF A DELAY CHOLERA MODEL WITH CONSTANT INFECTIOUS PERIOD[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 598-623. doi: 10.11948/20190006
Citation: Xue-yong Zhou, Xiang-yun Shi, Jing-an Cui. DYNAMIC BEHAVIOR OF A DELAY CHOLERA MODEL WITH CONSTANT INFECTIOUS PERIOD[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 598-623. doi: 10.11948/20190006

DYNAMIC BEHAVIOR OF A DELAY CHOLERA MODEL WITH CONSTANT INFECTIOUS PERIOD

  • Corresponding author: Email address:xueyongzhou@xynu.edu.cn(X. Zhou) 
  • Fund Project: This work is supported by the National Natural Science Foundation of China (No. 11701495), Scientific and Technological Key Projects of Henan Province (No. 192102310193) and Nanhu Scholars Program for Young Scholars of XYNU
  • In this paper, a delay cholera model with constant infectious period is investigated. By analyzing the characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium of the model is established. It is proved that if the basic reproductive number $ \mathcal{R}_0>1 $, the system is permanent. If $ \mathcal{R}_0<1 $, by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the disease-free equilibrium. If $ \mathcal{R}_0>1 $, also by means of an iteration technique, sufficient conditions are obtained for the global asymptotic stability of the endemic equilibrium. Numerical simulations are carried out to illustrate the main theoretical results.
    MSC: 92B05
  • 加载中
  • [1] A. S. Azman, K. E. Rudolph, D. A. T. Cummings and J. Lessler, The incubation period of cholera: A systematic review, Journal of Infection, 2013, 66(5), 432-438. doi: 10.1016/j.jinf.2012.11.013

    CrossRef Google Scholar

    [2] N. Bacaër and E. Ait Dads, On the biological interpretation of a definition for the parameter R0 in periodic population models, J. Math. Biol, 2012, 65, 601-621. doi: 10.1007/s00285-011-0479-4

    CrossRef Google Scholar

    [3] E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 2002, 33, 1144-1165. doi: 10.1137/S0036141000376086

    CrossRef Google Scholar

    [4] F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 2013, 10, 1335-1349. doi: 10.3934/mbe.2013.10.1335

    CrossRef Google Scholar

    [5] V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. Epidemiol. Sante Publique, 1979, 27, 121-132.

    Google Scholar

    [6] C. T. Codeço, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis., 2001, 1-1.

    Google Scholar

    [7] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci, 2002, 180, 29-48. doi: 10.1016/S0025-5564(02)00108-6

    CrossRef Google Scholar

    [8] S. Gao, Z. Teng and D. Xie, Analysis of a delayed SIR epidemic model with pulse vaccination, Chaos, Solitons & Fractals, 2009, 40(2), 1004-1011.

    Google Scholar

    [9] M. Gatto, L. Mari, E Bertuzzo., R. Casagrandi, L. Righetto and I. Rodriguez-Iturbe, A. Rinaldo, Generalized reproduction numbers and the prediction of patterns in waterborne disease, Proceedings of the National Academy of Sciences, 2012, 48, 19703-19708.

    Google Scholar

    [10] M. Gatto, L. Mari, E Bertuzzo., R. Casagrandi, L. Righetto, I. Rodriguez-Iturbe and A. Rinaldo, Spatially explicit conditions for waterborne pathogen invasionz, The American Naturalist, 2013, 182, 328-346. doi: 10.1086/671258

    CrossRef Google Scholar

    [11] M. Giaquinta and G. Modica, Mathematical Analysis. An Introduction to Functions of Several Variables, Birkhauser Boston, Inc., Boston, MA, 2009.

    Google Scholar

    [12] D. M. Hartley, J. Glenn Morris Jr and D. L. Smith, Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemic? PLoS Medicine, 2006, 3(1), e7.

    Google Scholar

    [13] T. R. Hendrix, The pathophysiology of cholera, Bull. NY Acad. Med., 1971, 47, 1169-1180.

    Google Scholar

    [14] H. W. Hethcote and D. W. Tudor, Integral equation models for endemic infectious diseases, Journal of Mathematical Biology, 1980, 9(1), 37. doi: 10.1007/BF00276034

    CrossRef Google Scholar

    [15] D. L. Heymann (Ed.), Control of Communicable Diseases Manual, nineteenth ed., American Public Health Association, Washington, 2008.

    Google Scholar

    [16] M. S. Islam, M. A. Miah, M. K. Hasan, R. B. Sack and M. J. Albert. Detection of non-culturable Vibrio cholerae O1 associated with a cyanobacterium from an aquatic environment in Bangladesh, T. Roy. Soc. Trop. Med. H., 1994, 88, 298-299. doi: 10.1016/0035-9203(94)90085-X

    CrossRef Google Scholar

    [17] J. B. Kaper, J. G. Morrisa and M. M. Levine Cholera, Clin. Microbiol. Rev., 1995, 8, 48-86. doi: 10.1128/CMR.8.1.48

    CrossRef Google Scholar

    [18] J. Lin, R. Xu and X. Tian, Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence, Applied Mathematical Modelling, 2018, 63, 688-708. doi: 10.1016/j.apm.2018.07.013

    CrossRef Google Scholar

    [19] I. M. Longini Jr, A. Nizam, M. Ali, M. Yunus, N. Shenvi and J.D. Clemens, Controlling endemic cholera with oral vaccines, PLoS Med, 2007, 4(11), e336. doi: 10.1371/journal.pmed.0040336

    CrossRef Google Scholar

    [20] R. L. Miller Neilan, E. Schaefer, H. Gaff, K. R. Fister and S. Lenhart, Modeling optimal intervention strategies for cholera, Bull. Math. Biol, 2010, 72, 2004-2018. doi: 10.1007/s11538-010-9521-8

    CrossRef Google Scholar

    [21] Z. Mukandavire and W. Garira, Sex-structured HIV/AIDS model to analyse the effects of condom use with application to Zimbabwe, J. Math. Bio, 2007, 54, 669-699. doi: 10.1007/s00285-006-0063-5

    CrossRef Google Scholar

    [22] E. J. Nelson, J. B. Harris, J. G. Morris, S. B. Calderwood and A. Camilli, Cholera transmission: the host, pathogen and bacteriophage dynamics, Nat. Rev. Microbiol., 2009, 7, 693-702. doi: 10.1038/nrmicro2204

    CrossRef Google Scholar

    [23] M. Pascual, M. J. Bouma and A. P. Dobson, Cholera and climate: revisiting the quantitative evidence, Microbes Infect., 2002, 4, 237-245. doi: 10.1016/S1286-4579(01)01533-7

    CrossRef Google Scholar

    [24] A. Rinaldo, E. Bertuzzo, L. Mari, L. Righetto, M. Blokesch and M. Gatto, Reassessment of the 2010-2011 Haiti cholera outbreak and rainfall-driven multiseason projections, Proceedings of the National Academy of Sciences, 2012, 109(17), 6602-6607. doi: 10.1073/pnas.1203333109

    CrossRef Google Scholar

    [25] L. Righetto, R. Casagrandi, E. Bertuzzo, L. Mari, M. Gatto, I. Rodriguez-Iturbe and A. Rinaldo, The role of aquatic reservoir fluctuations in long-term cholera patterns, Epidemics, 2013, 4, 33-42.

    Google Scholar

    [26] S. Ruan and J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, IMA J. Mathematics Applied in Medicine and Biology, 2001, 18, 41-52. doi: 10.1093/imammb/18.1.41

    CrossRef Google Scholar

    [27] Z. Shuai, J. H. Tien and P. van den Driessche, Cholera models with hyperinfectivity and temporary immunity, Bulletin of Mathematical Biology, 2012, 74(10), 2423-2445. doi: 10.1007/s11538-012-9759-4

    CrossRef Google Scholar

    [28] J.P. Tian and J. Wang, Global stability for cholera epidemic models, Mathematical Biosciences, 2011, 232, 31-41. doi: 10.1016/j.mbs.2011.04.001

    CrossRef Google Scholar

    [29] V. Tudor, I. Strati and Smallpox, Cholera, Abacus Press, Tunbridge Wells, 1977.

    Google Scholar

    [30] World Health Organization web page: http://www.who.int/mediacentre/factsheets/fs107/en/

    Google Scholar

    [31] R. Xu and Y. Du, A delayed SIR epidemic model with saturation incidence and constant infectious period, J. Appl. Math. Comp., 2010, 35, 229-250.

    Google Scholar

    [32] X. Zhou and J. Cui, Modelling and stability analysis for a cholera model with vaccination, Math. Method. Appl. Sci, 2011, 34(14), 1711-1724.

    Google Scholar

    [33] X. Zhou, X. Shi and J. Cui, Stability and backward bifurcation on a cholera epidemic model with saturated recovery rate, Mathematical Methods in the Applied Sciences, 2017, 40(4), 1288-1306. doi: 10.1002/mma.4053

    CrossRef Google Scholar

Figures(3)  /  Tables(1)

Article Metrics

Article views(3439) PDF downloads(517) Cited by(0)

Access History

Other Articles By Authors

Top

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint