Citation: | Cung The Anh, Nguyen Thi Minh Toai, Vu Manh Toi. UPPER BOUNDS ON THE NUMBER OF DETERMINING MODES, NODES, AND VOLUME ELEMENTS FOR A 3D MAGENETOHYDRODYNAMIC-α MODEL[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 624-648. doi: 10.11948/20190043 |
[1] | D. A. F. Albanez, H. J. Nussenzveig-Lopes and E. S. Titi, Continuous data assimilation for the three-dimensional Navier-Stokes-$\alpha$ model, Asymptot. Anal, 2016, 97(1-2), 139-164. doi: 10.3233/ASY-151351 |
[2] | C. T. Anh, D. T. Son and V. M. Toi, Regularity of global attractor for a 3D MHD-$\alpha$ model, Ann. Pol. Math, 2017, 120, 97-114. doi: 10.4064/ap170505-18-10 |
[3] | C. T. Anh and P. T. Trang, Decay characterization of solutions to viscous Camassa-Holm equations, Nonlinearity, 2018, 31(2), 621-650. |
[4] | C. Bjorland and M. E. Schonbek, On questions of decay and existence for the viscous Camassa-Holm equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2008, 25(5), 907-936. doi: 10.1016/j.anihpc.2007.07.003 |
[5] |
D. Catania, Finite dimensional global attractor for 3D MHD-$\alpha$ models: a comparison, J. Math. Fluid Mech., 2012, 14(1), 95-115. doi: 10.1007/s00021-010-0041-y
CrossRef $\alpha$ models: a comparison" target="_blank">Google Scholar |
[6] | D. Catania, Global attractor and determining modes for a hyperbolic MHD turbulence model, J. Turbul., 2011, 12(40), 20. |
[7] | D. Catania and P. Secchi, Global existence and finite dimensional global attractor for a 3D double viscous MHD-$\alpha$ model, Commun. Math. Sci., 2010, 8(4), 1021-1040. doi: 10.4310/CMS.2010.v8.n4.a12 |
[8] | B. Cockburn, D. Jones and E. S. Titi, Estimating the asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comp, 1997, 66(219), 1073-1087. doi: 10.1090/S0025-5718-97-00850-8 |
[9] |
J. Fan and T. Ozawa, Global Cauchy problem for the 2-D magnetohydrodynamic-$\alpha$ models with partial viscous terms, J. Math. Fluid Mech., 2010, 12(2), 306-319. doi: 10.1007/s00021-008-0289-7
CrossRef $\alpha$ models with partial viscous terms" target="_blank">Google Scholar |
[10] | C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differential Equations, 2002, 14(1), 1-35. |
[11] | C. Foias, O. P. Manley, R. Temam and Y. Treve, Asymptotic analysis of the Navier-Stokes equations, Phys. D, 1983, 9(1-2) 157-188. doi: 10.1016/0167-2789(83)90297-X |
[12] | C. Foias and G. Prodi, Sur le comportement global des solutions des solutions non-stationnaires des equations de Navier-Stokes en dimension 2, Rend. Semin. Mat. Univ. Padova, 1967, 39, 1-34. |
[13] | C. Foias and R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values, Math. Comp, 1984, 43(167), 117-133. doi: 10.1090/S0025-5718-1984-0744927-9 |
[14] | C. Foias and E. S. Titi, Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity, 1991, 4(1), 135-153. |
[15] | D. D. Holm, Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics, Chaos, 2002, 12(2), 518-530. doi: 10.1063/1.1460941 |
[16] | M. Holst, E. Lunasin and G. Tsogtgerel, Analysis of a general family of regularized Navier-Stokes and MHD models, J. Nonlinear Sci., 2010, 20(5), 523-567. doi: 10.1007/s00332-010-9066-x |
[17] | A. Huang, W. Huo and M. Jolly, Finite-dimensionality and determining modes of the global attractor for 2D Boussinesq equations with fractional Laplacian, Adv. Nonlinear Stud., 2018, 18(3), 501-515. doi: 10.1515/ans-2017-6036 |
[18] |
A.A. Ilyin and E.S. Titi, Attractors for the two-dimensional Navier-Stokes-$\alpha$ model: an $\alpha$-dependence study, J. Dynam. Differential Equations, 2003, 15(4), 751-778. doi: 10.1023/B:JODY.0000010064.06851.ff
CrossRef $\alpha$ model: an |
[19] | Z. Jiang and J. Fan, Time decay rate for two 3D magnetohydrodynamics-$\alpha$ models, Math. Methods Appl. Sci., 2014, 37(6), 838-845. doi: 10.1002/mma.2840 |
[20] | D. Jones and E. Titi, On the number of determining nodes for the 2D Navier-Stokes equations, J. Math. Anal. Appl., 1992, 168(1), 72-88. |
[21] | D. Jones and E. Titi, Determining finite volume elements for the 2D Navier-Stokes equations, Phys. D, 1992, 60(1-4), 165-174. doi: 10.1016/0167-2789(92)90233-D |
[22] | D. Jones and E. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J., 1993, 42(3), 875-887. doi: 10.1512/iumj.1993.42.42039 |
[23] | V.K. Kalantarov and E.S. Titi, Global attractor and determining modes for the 3D Navier-Stokes-Voight equations, Chin. Ann. Math. Ser. B, 2009, 30(6), 697-714 |
[24] | D. KC and K. Yamazaki, Regularity results on the Leray-alpha magnetohydrodynamics systems, Nonlinear Anal. Real World Appl., 2016, 32, 178-197. doi: 10.1016/j.nonrwa.2016.04.006 |
[25] | P. Korn, On degrees of freedom of certain conservative turbulence models for the Navier-Stokes equations, J. Math. Anal. Appl., 2011, 378(1), 49-63. doi: 10.1016/j.jmaa.2011.01.013 |
[26] | B. Li, H. Zhu and C. Zhao, Time decay rate of solutions to the hyperbolic MHD equations in $\mathbb{R}.3$, Acta Math. Sci. Ser. B Engl. Ed., 2016, 36(5), 1369-1382. |
[27] | J.S. Linshiz and E.S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models, J. Math. Phys., 2007, 48(6), 065504. doi: 10.1063/1.2360145 |
[28] |
J. Liu, On the initial boundary value problem for certain 2D MHD-$\alpha$ equations without velocity viscosity, Commun. Pure Appl. Anal., 2016, 15(4), 1179-1191. doi: 10.3934/cpaa.2016.15.1179
CrossRef $\alpha$ equations without velocity viscosity" target="_blank">Google Scholar |
[29] |
N. Miyajima and D. Wirosoetisno, Navier-Stokes equations on the $\beta$-plane: Determining modes and nodes, Phys. D, 2019, 386/387, 31-37. doi: 10.1016/j.physd.2018.08.005
CrossRef $\beta$-plane: Determining modes and nodes" target="_blank">Google Scholar |
[30] | M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 1983, 36(5), 635-664. doi: 10.1002/cpa.3160360506 |
[31] | R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, second ed., Philadelphia, 1995. |
[32] | C. Zhao and B. Li, Analyticity of the global attractor for the 3D regularized MHD equations, Electron. J. Differential Equations, 2016, 179, 20. |
[33] | C. Zhao, Y. Li and M. Zhang, Determining nodes of the global attractor for an incompressible non-Newtonian fluid, J. Appl. Anal. Comput., 2018, 8(3), 954-964. |
[34] | Y. Zhou and J. Fan, Regularity criteria for a magnetohydrodynamical-$\alpha$ model, Commun. Pure Appl. Anal., 2011, 10(1), 309-326. |
[35] | Y. Zhou and J. Fan, On the Cauchy problem for a Leray-$\alpha$-MHD model, Nonlinear Anal. Real World Appl., 2011, 12(1), 648-657. doi: 10.1016/j.nonrwa.2010.07.007 |
[36] | Z. Zhu and C. Zhao, Pullback attractor and invariant measures for the three-dimensional regularized MHD equations, Discrete Contin. Dyn. Syst., 2018, 38(3), 1461-1477. doi: 10.3934/dcds.2018060 |