[1]
|
E. Bajlekova, Fractional evolution equations in Banach spaces (Ph.D. thesis), University Press Facilities, Eindhoven University of Technology, 2001.
Google Scholar
|
[2]
|
Z. Fan, Characterization of compactness for resolvents and its applications, Appl. Math. Comput., 2014, 232, 60-67.
Google Scholar
|
[3]
|
S. Hu and N. S. Papageorgious, Handbook of Multivalued Analysis (Theory), Kluwer Academic Publishers, Dordrecht Boston, London, 1997.
Google Scholar
|
[4]
|
Y. Jiang and N. Huang, Solvability and optimal controls of fractional delay evolution inclusions with Clarke subdifferential, Math. Meth. Appl. Sci., 2017, 40, 3026-3039.
Google Scholar
|
[5]
|
S. Kumar, Mild solution and fractional optimal control of semilinear system with fixed delay, J. Optim. Theory Appl., 2017, 174, 108-121.
Google Scholar
|
[6]
|
K. Li and J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett., 2012, 25, 808-812.
Google Scholar
|
[7]
|
T. Lian, Z. Fan and G. Li, Time optimal controls for fractional differential systems with Riemann-Liouville derivatives, Fract. Calc. Appl. Anal., 2018, 21(6), 1524-1541.
Google Scholar
|
[8]
|
C. Lizama, Regularized solutions for abstract Volterra equations, J. Math. Anal. Appl., 2000, 243, 278-292.
Google Scholar
|
[9]
|
C. Lizama, On approximation and representation of $k$-regularized resolvent families, Integr. equ. oper. theory, 2001, 41, 223-229.
Google Scholar
|
[10]
|
F. Z. Mokkedem and X. L. Fu, Optimal control problems for a semilinear evolution system with infinite delay, Appl. Math. Optim., 2017. Doi: 10.1007/s00245-017-9420-6.
Google Scholar
|
[11]
|
Z. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
Google Scholar
|
[12]
|
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
Google Scholar
|
[13]
|
G. Da Prato and M. Iannelli, Linear abstract integrodifferential equations of hyperbolic type in Hilbert spaces, Rend. Sem. Mat. Padova, 1980, 62, 191-206.
Google Scholar
|
[14]
|
G. Da Prato and M. Iannelli, Linear integrodifferential equations in Banach spaces, Rend. Sem. Mat. Padova, 1980, 62, 207-219.
Google Scholar
|
[15]
|
J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, Berlin, 1993.
Google Scholar
|
[16]
|
J. R. Wang, M. Fe${\rm{\ddot c}}$kan and A.Debbouche, Time optimal control of a system governed by non-instantaneous impulsive differential equations, J. Optim. Theory Appl., 2019, 182(2), 573-587.
Google Scholar
|
[17]
|
J. R. Wang, X. Xiang and W. Wei, The constructive approach on existence of time optimal controls of system governed by nonlinear equations on banach spaces, Electron. J. Qual. Theory Differ. Equ., 2009, 45, 1-10.
Google Scholar
|
[18]
|
J. R. Wang and Y. Zhou, Study of an approximation process of time optimal control for fractional evolution systems in Banach spaces, Adv. Differ. Equ., 2011. Doi: 10.1155/2011/385324.
Google Scholar
|
[19]
|
J. Wang and Y. Zhou, Time optimal control problem of a class of fractional distributed systems, Int. J. Dyn. Syst. Differ. Equ., 2011, 3, 363-382.
Google Scholar
|
[20]
|
E. Zeidler, Nonlinear Functional Analysis and Its Application Ⅱ/A, Springer-Verlag, New York, 1990.
Google Scholar
|
[21]
|
Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 2010, 59, 1063-1077.
Google Scholar
|
[22]
|
S. Zhu, Z. Fan and G. Li, Optimal controls for Riemann-Liouville fractional evolution systems without Lipschitz assumption, J. Optim. Theory Appl., 2017, 174, 47-64.
Google Scholar
|
[23]
|
S. Zhu, Z. Fan and G. Li, Approximate controllability of Riemann-Liouville fractional evolution equations with integral contractor assumption, J. Appl. Anal. Comput., 2018, 8, 532-548.
Google Scholar
|
[24]
|
S. Zhu, Z. Fan and G. Li, Topological characteristics of solution sets for fractional evolution equations and applications to control systems, Topol. Methods Nonlinear Anal., 2019. Doi: 10.12775/TMNA.2019.033.
Google Scholar
|