2020 Volume 10 Issue 2
Article Contents

Shaoli Wang, Fei Xu. Analysis of an HIV model with post-treatment control[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 667-685. doi: 10.11948/20190081
Citation: Shaoli Wang, Fei Xu. Analysis of an HIV model with post-treatment control[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 667-685. doi: 10.11948/20190081

Analysis of an HIV model with post-treatment control

  • Recent investigation indicated that latent reservoir and immune impairment are responsible for the post-treatment control of HIV infection. In this paper, we simplify the disease model with latent reservoir and immune impairment and perform a series of mathematical analysis. We obtain the basic infection reproductive number $ R_{0} $ to characterize the viral dynamics. We prove that when $ R_{0}<1 $, the uninfected equilibrium of the proposed model is globally asymptotically stable. When $ R_{0}>1 $, we obtain two thresholds, the post-treatment immune control threshold and the elite control threshold. The model has bistable behaviors in the interval between the two thresholds. If the proliferation rate of CTLs is less than the post-treatment immune control threshold, the model does not have positive equilibria. In this case, the immune free equilibrium is stable and the system will have virus rebound. On the other hand, when the proliferation rate of CTLs is greater than the elite control threshold, the system has stable positive immune equilibrium and unstable immune free equilibrium. Thus, the system is under elite control.
    MSC: 92C45, 92B05
  • 加载中
  • [1] "Mississippi baby" now has detectable HIV, researchers find, National Institutes of Health News. July 10, 2014. Available at www.niaid.nih.gov/news/newsreleases/2014/pages/mississippibabyhiv.aspx.

    Google Scholar

    [2] C. L. Althaus and R. J. De Boer, Dynamics of immune escape during HIV/SIV infection. PLoS Comput. Biol., 2008, 4. E1000103.

    Google Scholar

    [3] E. Avila-Vales, N. Chan-Chi and G. Garcia-Almeida, Analysis of a viral infection model with immune impairment, intracellular delay and general non-linear incidence rate, Chaos Solitons Fractals, 2014, 69, 1-9.

    Google Scholar

    [4] C. Bartholdy, J. P. Christensen, D. Wodarz and A. R. Thomsen, Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infection with lymphocytic choriomeningitis virus, J. Virol., 2000, 74, 1034-10311.

    Google Scholar

    [5] S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model. as an example, Int. Stat. Rev., 1994, 2, 229-243.

    Google Scholar

    [6] S. Bonhoeffer and G. M. N. D. F. Rembiszewski M, Ortiz, Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection, AIDS, 2000, 14, 2313-2322.

    Google Scholar

    [7] D. Burg, L. Rong, A. U. Neumann and H. Dahari, Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection, J. Theor. Biol., 2009, 259, 751-759. doi: 10.1016/j.jtbi.2009.04.010

    CrossRef Google Scholar

    [8] R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV infection: A comparison., J. Theor. Biol., 1998, 190, 201-214. doi: 10.1006/jtbi.1997.0548

    CrossRef Google Scholar

    [9] S. Chen, Z. Liu and J. Shi, Nonexistence of nonconstant positive steady states of a diffusive predator-prey model with fear effect, J. Nonlinear Modeling and Analysis, 2019, 1(1), 47-56.}, ,

    Google Scholar

    [10] M. J. Churchill, S. G. Deeks, D. M. Margolis et al., HIV reservoirs: what, where and how to target them, Nature Reviews Microbiology, 2016, 14, 55-60.

    Google Scholar

    [11] K. E. Clarridge, J. Blazkova, K. Einkauf et al., Effect of analytical treatment interruption and reinitiation of antiretroviral therapy on HIV reservoirs and immunologic parameters in infected individuals, PLoS Pathog, 2018, 14. E1006792.

    Google Scholar

    [12] J. M. Conway and A. S. Perelson, Post-treatment control of HIV infection. proc, Natl. Acad. Sci. USA, 2015, 112, 5467-5472. doi: 10.1073/pnas.1419162112

    CrossRef Google Scholar

    [13] R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4$^{+}$ T-cells., Math. Biosci., 2000, 165, 27-39. doi: 10.1016/S0025-5564(00)00006-7

    CrossRef Google Scholar

    [14] H. Doekes, C. Fraser and K. Lythgoe, Effect of the latent reservoir on the evolution of HIV at the within- and between-host levels., PLoS Comput Biol, 2017, 13. E1005228. doi: 10.1371/journal.pcbi.1005228

    CrossRef Google Scholar

    [15] C. Gavegnano, J. H. Brehm, F. P. Dupuy et al., Novel mechanisms to inhibit HIV reservoir seeding using Jak inhibitors, PLOS Pathogens, 2017, 13. E1006740.

    Google Scholar

    [16] J. Hale and S. M. Verduyn Lunel, Introduction to functional differential equations, Springer, New York, 1993.

    Google Scholar

    [17] D. D. Ho, A. U. Neumann, A. S. Perelson et al., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 1995, 373, 123-126.

    Google Scholar

    [18] Z. Hu, J. Zhang, H. Wang et al., Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment, Appl. Math. Model., 2014, 38, 524-534.

    Google Scholar

    [19] S. Iwami, T. Miura, S. Nakaoka and Y. Takeuchi, Immune impairment in HIV infection: Existence of risky and immunodeficiency thresholds, J. Theor. Biol., 2009, 260, 490-501. doi: 10.1016/j.jtbi.2009.06.023

    CrossRef Google Scholar

    [20] S. Iwami, S. Nakaoka, Y. Takeuchi and T. Miura, Immune impairment thresholds in HIV infection., Immunol. Lett., 2009, 123, 149-154. doi: 10.1016/j.imlet.2009.03.007

    CrossRef Google Scholar

    [21] H. Kim and A. S. Perelson, Dynamic characteristics of HIV-1 reservoirs., Curr. Opin. HIV AIDS, 2006, 1, 152-156.

    Google Scholar

    [22] H. Kim and A. S. Perelson, Viral and latent reservoir persistence in HIV-1-infected patients on therapy., PLoS Comput. Biol., 2006, 2. E135. doi: 10.1371/journal.pcbi.0020135

    CrossRef Google Scholar

    [23] N. N. Krasovskii, Problems of the theory of stability of motion, (Russian), (1959). English translation, Stanford University Press, Stanford, CA, 1963.

    Google Scholar

    [24] J. P. LaSalle, Some extensions of liapunov's second method, IRE Transactions on Circuit Theory, 1960, CT-7, 520-527.

    Google Scholar

    [25] M. Li and H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to htlv-i infection, Bull. Math. Biol., 2011, 73, 1774-1793. doi: 10.1007/s11538-010-9591-7

    CrossRef Google Scholar

    [26] S. Marino, I. B. Hogue, C. J. Ray and D.E. Kirschner.A methodology for performing global uncertainty and sensitivity analysis in systems biology, Journal of Theoretical Biology, 2008, 254(1), 178-196.

    Google Scholar

    [27] M. Markowitz, M. Louie, A. Hurley et al., A novel antiviral intervention results in more a urate assessment of human immunodeficiiency virus type 1 replication dynamics and T-cell decay in vivo., J. Virol, 2003, 77, 5037-5038.

    Google Scholar

    [28] P. W. Nelson and A. S. Perelson, Mathematical analysis of a delay differential equation models of HIV-1 infection, Math. Biosci., 2002, 179, 73-94. doi: 10.1016/S0025-5564(02)00099-8

    CrossRef Google Scholar

    [29] M. A. Nowak and C. R. M. Bangham, Population dynamics of immune response to persistent viruses, Science, 1996, 272, 74-79. doi: 10.1126/science.272.5258.74

    CrossRef Google Scholar

    [30] M. A. Nowak, R. M. May, R. E. Phillips et al., Antigenic oscillations and shifting immunodominance in HIV-1 infections, Nature, 1995, 375, 606-611.

    Google Scholar

    [31] D. Persaud, H. Gay, C. Ziemniak et al., Absence of detectable HIV-1 viremia after treatment cessation in an infant, N. Engl. J. Med., 2013, 369, 1828-1835.

    Google Scholar

    [32] A. Pugliese and A. Gandolfi, Asimple model of pathogen-immunedynamics including specific andnon-specific immunity, Math. Biosci., 2008, 214, 73-80. doi: 10.1016/j.mbs.2008.04.004

    CrossRef Google Scholar

    [33] R. R. Regoes, D. Wodarz and M. A. Nowak, Virus dynamics: the effect of target cell limitation and immune responses on virus evolution, J. Theor. Biol., 1998, 191, 451-462. doi: 10.1006/jtbi.1997.0617

    CrossRef Google Scholar

    [34] L. Rong and A. S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theor. Biol., 2009, 260, 308-331. doi: 10.1016/j.jtbi.2009.06.011

    CrossRef Google Scholar

    [35] L. Rong, and A.S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci., 2009, 217, 77-87. doi: 10.1016/j.mbs.2008.10.006

    CrossRef Google Scholar

    [36] Z. Rubinstein, A Course in Ordinary and Partial Differential Equations, Academic Press, New York, 1969.

    Google Scholar

    [37] X. Song, S. Wang and X. Zhou, Stability and hopf bifurcation for a viral infection model with delayed non-lytic immune response., J. Appl. Math. Comput., 2010, 33, 251-265.

    Google Scholar

    [38] B. Tang, Y. Xiao, R. A. Cheke and N. Wang, Piecewise virus-immune dynamic model with HIV-1 rna-guided therapy, J. Theor. Biol., 2015, 377, 36-46. doi: 10.1016/j.jtbi.2015.03.040

    CrossRef Google Scholar

    [39] G. C. Treasure, E. Aga, R. J. Bosch et al., Relationship among viral load outcomes in HIV treatment interruption trials, J Acquir Immune Defic Syndr., 2016, 72, 310-313.

    Google Scholar

    [40] S. Wang and L. Rong, Stochastic population switch may explain the latent reservoir stability and intermittent viral blips in HIV patients on suppressive therapy, J. Theor. Biol., 2014, 360, 137-148. doi: 10.1016/j.jtbi.2014.06.042

    CrossRef Google Scholar

    [41] K. Wang, W. Wang and X. Liu, Global stability in a viral infection model with lytic and nonlytic immune response, J. Comput. Appl. Math., 2007, 51, 1593-1610.

    Google Scholar

    [42] K. Wang, W. Wang, H. Pang and X. Liu, Complex dynamic behavior in a viral model with delayed immune response, Phys. D, 2007, 226, 197-208. doi: 10.1016/j.physd.2006.12.001

    CrossRef Google Scholar

    [43] S. Wang and F. Xu, Thresholds and bistability in virus-immune dynamics, Applied Mathematics Letters, 2018, 78, 105-111. doi: 10.1016/j.aml.2017.11.002

    CrossRef Google Scholar

    [44] S. Wang, F. Xu and L. Rong, bistability analysis of an hiv model with immune response, Journal of Biological Systems, 2017, 25, 677-695. doi: 10.1142/S021833901740006X

    CrossRef Google Scholar

    [45] S. Wang, X. Song and Z. Ge, Dynamics analysis of a delayed viral infection model with immune impairment, Appl. Math. Model., 2011, 35, 4877-4885. doi: 10.1016/j.apm.2011.03.043

    CrossRef Google Scholar

    [46] X. Wang, Y. Tao and X. Song, A delayed HIV-1 infection model with beddington-deangelis functional response, Nonlinear Dyn., 2010, 62, 67-72. doi: 10.1007/s11071-010-9699-1

    CrossRef Google Scholar

    [47] Z. Wang and X. Liu, A chronic viral infection model with immune impairment, J. Theor. Biol., 2007, 249, 532-542. doi: 10.1016/j.jtbi.2007.08.017

    CrossRef Google Scholar

    [48] X. Wei, S. K. Ghosh, M. E. Taylor et al., Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 1995, 373, 117-122.

    Google Scholar

    [49] D. Wodarz, J. P. Christensen and A. R. Thomsen, The importance of lytic and nonlytic immune response in viral infections, Trends Immunol, 2002, 23, 194-200. doi: 10.1016/S1471-4906(02)02189-0

    CrossRef Google Scholar

    [50] Y. Xiao, S. Tang, Y. Zhou et al., Predicting the hiv/aids epidemic and measuring the effect of mobility in mainland china, Journal of Theoretical Biology, 2013, 317, 271-285.

    Google Scholar

    [51] W. Zhang, L. M. Wahl and P. Yu, Viral blips may not need a trigger: How transient viremia can arise in deterministic in-host models, SIAM Review, 2014, 56, 127-155. doi: 10.1137/130937421

    CrossRef Google Scholar

    [52] H. Zhu and X. Zou, Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay, Disc. Cont. Dyn. Syst. Ser. B., 2009, 12, 511-524. doi: 10.3934/dcdsb.2009.12.511

    CrossRef Google Scholar

Figures(5)  /  Tables(5)

Article Metrics

Article views(2886) PDF downloads(808) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint