2020 Volume 10 Issue 2
Article Contents

Kejun Zhuang, Wenqian You, Gao Jia. Spatiotemporal complexity of a diffusive planktonic system with prey-taxis and toxic effects[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 686-712. doi: 10.11948/20190094
Citation: Kejun Zhuang, Wenqian You, Gao Jia. Spatiotemporal complexity of a diffusive planktonic system with prey-taxis and toxic effects[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 686-712. doi: 10.11948/20190094

Spatiotemporal complexity of a diffusive planktonic system with prey-taxis and toxic effects

  • Corresponding author: Email address:zhkj123@163.com(K. Zhuang) 
  • Fund Project: The authors were supported by the MOE (Ministry of Education in China) Project of Humanities and Social Sciences (17YJC630175) and Anhui Provincial Quality Engineering Project (2019sxzx10)
  • In this paper, we propose a three-species reaction-diffusion planktonic system with prey-taxis and toxic effects, in which the zooplankton can recognize the nontoxic and toxin-producing phytoplankton and can make proper response. We first establish the existence and stability of the unique positive constant equilibrium solution by utilizing the linear stability theory for partial differential equations. Then we obtain the existence and properties of nonconstant positive solutions by detailed steady state bifurcation analysis. In addition, we obtain that change of taxis rate will result in the appearance of time-periodic solutions. Finally, we conduct some numerical simulations and give the conclusions.
    MSC: 35B32, 35B10, 92D40
  • 加载中
  • [1] K. Agnihotri and H. Kaur, The dynamics of viral infection in toxin producing phytoplankton and zooplankton system with time delay, Chaos, Solitons and Fractals, 2019, 118, 122-133. doi: 10.1016/j.chaos.2018.11.018

    CrossRef Google Scholar

    [2] M. Banerjee and E. Venturino, A phytoplankton-toxic phytoplankton-zooplankton model, Ecological Complexity, 2011, 8, 239-248. doi: 10.1016/j.ecocom.2011.04.001

    CrossRef Google Scholar

    [3] J. Chattopadhayay, R. R. Sarkar and S. Mandal, Toxin-producing plankton may act as a biological control for planktonic blooms--field study and mathematical modelling, Journal of Theoretical Biology, 2002, 215, 333-344. doi: 10.1006/jtbi.2001.2510

    CrossRef Google Scholar

    [4] J. Chattopadhyay, R. R. Sarkar and S. Pal, Mathematical modelling of harmful algal blooms supported by experimental findings, Ecological Complexity, 2004, 1, 225-235. doi: 10.1016/j.ecocom.2004.04.001

    CrossRef Google Scholar

    [5] J. P. Connolly and R. B. Coffin, Model of carbon cycling in planktonic food webs, Journal of Environmental Engineering, 1995, 121, 682-690. doi: 10.1061/(ASCE)0733-9372(1995)121:10(682)

    CrossRef Google Scholar

    [6] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, Journal of Functional Analysis, 1971, 8, 321-340. doi: 10.1016/0022-1236(71)90015-2

    CrossRef Google Scholar

    [7] M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Archive for Rational Mechanics and Analysis, 1973, 52, 161-180. doi: 10.1007/BF00282325

    CrossRef Google Scholar

    [8] S. Djilali, Effect of herd shape in a diffusive predator-prey model with time delay, Journal of Applied Analysis and Computation, 2019, 9, 638-654.

    Google Scholar

    [9] J. H. Edwards, The role of predation in plankton models, Journal of Plankton Research, 1992, 14, 157-172. doi: 10.1093/plankt/14.1.157

    CrossRef Google Scholar

    [10] G. M. Hallegraeff, A review of harmful algae blooms and their apparent global increase, Phycologia, 1993, 32, 79-99. doi: 10.2216/i0031-8884-32-2-79.1

    CrossRef Google Scholar

    [11] R. Han and B. Dai, Spatiotemporal pattern formation and selection induced by nonlinear cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Analysis: Real World Applications, 2019, 45, 82-853.

    Google Scholar

    [12] G. C. Hays, A. J. Richardson and C. Robinson, Climate change and marine plankton, Trends in Ecology and Evolution, 2005, 20, 337-344. doi: 10.1016/j.tree.2005.03.004

    CrossRef Google Scholar

    [13] S. Jang, J. Baglama and L. Wu, Dynamics of phytoplanktonšCzooplankton systems with toxin producing phytoplankton, Applied Mathematics and Computation, 2014, 227, 717-740. doi: 10.1016/j.amc.2013.11.051

    CrossRef Google Scholar

    [14] T. Kato, Functional Analysis, Springer-Verlag, Berlin, 1995.

    Google Scholar

    [15] C. Li, X. Wang and Y. Shao, steady states of a predator-prey model with prey-taxis, Nonlinear Analysis, 2014, 97, 155-168. doi: 10.1016/j.na.2013.11.022

    CrossRef Google Scholar

    [16] Z. Mei, Numerical Bifurcation Analysis for Reaction-Diffusion Equations, Springer-Verlag, Berlin, 2003.

    Google Scholar

    [17] A. Mondal, A. K. Pal and G. P. Samanta, Rich dynamics of non-toxic phytoplankton, toxic phytoplankton and zooplankton system with multiple gestation delays, International Journal of Dynamics and Control, 2018. DOI: https://doi.org/10.1007/s40435-018-0501-4.

    Google Scholar

    [18] K. J. Richards, Viral infections of oceanic plankton blooms, Journal of Theoretical Biology, 2017, 412, 27-35. doi: 10.1016/j.jtbi.2016.09.022

    CrossRef Google Scholar

    [19] T. Saha and M. Bandyopadhyay, Dynamical analysis of toxin producing PhytoplanktonšCZooplankton interactions, Nonlinear Analysis: Real World Applications, 2009, 10, 314-332. doi: 10.1016/j.nonrwa.2007.09.001

    CrossRef Google Scholar

    [20] A. K. Sharma, A. Sharma and K. Agnihotri, Spatiotemporal Dynamic of Toxin Producing Phytoplankton (TPP)-Zooplankton Interaction, International Journal of Mathematical Modelling and Computations, 2016, 6, 189-197.

    Google Scholar

    [21] Y. Song and X. Tang, Stability, steady-state bifurcations, and Turing patterns in a predator-prey model with herd behavior and prey-taxis, Studies in Applied Mathematics, 2017, 139, 371-404. doi: 10.1111/sapm.12165

    CrossRef Google Scholar

    [22] A. M. Steele and A. Yool, The role of higher predation in plankton population models, Journal of Plankton Research, 2000, 22, 1085-1112. doi: 10.1093/plankt/22.6.1085

    CrossRef Google Scholar

    [23] N. K. Thakur, S. K. Tiwari and R. K. Upadhyay, Harmful algal blooms in fresh and marine water systems: The role of toxin producing phytoplankton, International Journal of Biomathematics, 2016, 1650043, 20.

    Google Scholar

    [24] H. V. Thurman and A. P. Trujillo, Introductory oceanography, Prentice Hall, Englewood, 1997.

    Google Scholar

    [25] R. K. Upadhyay, N. Kumari and V. Rai, Exploring dynamical complexity in diffusion driven predator-prey systems: Effect of toxin producing phytoplankton and spatial heterogeneities, Chaos, Solitons and Fractals, 2009, 42, 584-594. doi: 10.1016/j.chaos.2009.01.027

    CrossRef Google Scholar

    [26] Q. Wang, Y. Song and L. Shao, Nonconstant positive steady states and pattern formation of 1D prey-taxis systems, Journal of Nonlinear Science, 2017, 27, 71-97. doi: 10.1007/s00332-016-9326-5

    CrossRef Google Scholar

    [27] W. Wang, S. Liu, D. Tian and D. Wang, Pattern dynamics in a toxin-producing phytoplankton-zooplankton model with additional food, Nonlinear Dynamics, 2018, 94, 211-228. doi: 10.1007/s11071-018-4354-3

    CrossRef Google Scholar

    [28] Y. Wang, H. Wang and W. Jiang, Hopf-transcritical bifurcation in toxic phytoplankton-zooplankton model with delay, Journal of Mathematical Analysis and Applications, 2014, 415, 574-594. doi: 10.1016/j.jmaa.2014.01.081

    CrossRef Google Scholar

    [29] M. Yousefnezhad and S. A. Mohammadi, Stability of a predator-prey system with prey taxis in a general class of functional responses, 2016, 36, 62-72.

    Google Scholar

    [30] J. Zhang, S. Wang and X. Kong, Effects of toxin delay on the dynamics of a phytoplankton-zooplankton model, Physica A, 2018, 505, 1150-1162. doi: 10.1016/j.physa.2018.04.049

    CrossRef Google Scholar

    [31] L. Zhang and S. Fu, Global bifurcation for a Holling-Tanner predator-prey model with prey-taxis, Nonlinear Analysis: Real World Applications, 2019, 47, 460-472. doi: 10.1016/j.nonrwa.2018.12.002

    CrossRef Google Scholar

    [32] T. Zhang, X. Liu, X. Meng and T. Zhang, Spatio-temporal dynamics near the steady state of a planktonic system, Computers and Mathematics with Applications, 2018, 75, 4490-4504. doi: 10.1016/j.camwa.2018.03.044

    CrossRef Google Scholar

    [33] J. Zhao, J. Tian and J. Wei, Minimal model of plankton systems revisited with spatial diffusion and maturation delay, Bulletin of Mathematical Biology, 2016, 78, 381-412. doi: 10.1007/s11538-016-0147-3

    CrossRef Google Scholar

Figures(5)  /  Tables(1)

Article Metrics

Article views(3369) PDF downloads(898) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint