2020 Volume 10 Issue 2
Article Contents

Linke Ma, Dan Liu, Mingliang Fang. Uniqueness of Meromorphic Functions Concerning Sharing Two Small Functions with Their Derivatives[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 713-728. doi: 10.11948/20190115
Citation: Linke Ma, Dan Liu, Mingliang Fang. Uniqueness of Meromorphic Functions Concerning Sharing Two Small Functions with Their Derivatives[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 713-728. doi: 10.11948/20190115

Uniqueness of Meromorphic Functions Concerning Sharing Two Small Functions with Their Derivatives

  • Corresponding author: Email address:mlfang@scau.edu.cn(M. Fang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 11701188)
  • In this paper, we study the uniqueness of meromorphic functions that share two small functions with their derivatives. We prove the following result: Let $ f $ be a nonconstant meromorphic function such that $ \mathop {\overline{\lim}}\limits_{r\to\infty} \frac{\bar{N}(r, f)}{T(r, f)}<\frac{3}{128} $, and let $ a $, $ b $ be two distinct small functions of $ f $ with $ a\not\equiv\infty $ and $ b\not\equiv\infty $. If $ f $ and $ f' $ share $ a $ and $ b $ IM, then $ f\equiv f' $.
    MSC: 30D35
  • 加载中
  • [1] A. Banerjee and B. Chakraborty, A note on uniqueness of meromorphic functions and their derivatives sharing two sets, Appl. Math. E-Notes, 2017, 17, 164-176.

    Google Scholar

    [2] J. Chen, A note on entire functions that share two small functions, Abstr. Appl. Anal., 2014, Art. ID 601507, 9.

    Google Scholar

    [3] J. Clunie, On integral and meromorphic functions, J. London Math. Soc., 1962, s1-37, 17-27.

    Google Scholar

    [4] G. G. Gundersen, Meromorphic functions that share two finite values with their derivative, Pacific J. Math., 1983, 105(2), 299-309. doi: 10.2140/pjm.1983.105.299

    CrossRef Google Scholar

    [5] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.

    Google Scholar

    [6] Z. Huang and R. Zhang, Uniqueness of the differences of meromorphic functions, Anal. Math., 2018, 44(4), 461-473. doi: 10.1007/s10476-018-0306-x

    CrossRef Google Scholar

    [7] I. Laine, Nevanlinna theory and complex differential equations, Walter de Gruyter & Co., Berlin, 1993.

    Google Scholar

    [8] P. Li, Unicity of meromorphic functions and their derivatives, J. Math. Anal. Appl., 2003, 285(2), 651-665. doi: 10.1016/S0022-247X(03)00459-1

    CrossRef Google Scholar

    [9] S. Majumder, Uniqueness and value distribution of differences of meromorphic functions, Appl. Math. E-Notes, 2017, 17, 114-123.

    Google Scholar

    [10] E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen, Manuscripta Math., 1979, 29(2-4), 195-206. doi: 10.1007/BF01303627

    CrossRef Google Scholar

    [11] E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer Ableitung zwei Werte teilen, Results Math., 1983, 6(1), 48-55.

    Google Scholar

    [12] G. Qiu, Uniqueness of entire functions that share some small functions, Kodai Math. J., 2000, 23(1), 1-11. doi: 10.2996/kmj/1138044152

    CrossRef Google Scholar

    [13] L. A. Rubel and C. Yang, Values shared by an entire function and its derivative, Complex analysis, 1977, 599, 101-103.

    Google Scholar

    [14] P. Sahoo and G. Biswas, Meromorphic function that share a set of small functions with its derivative, Mat. Stud., 2016, 46(2), 130-136.

    Google Scholar

    [15] H. P. Waghamore and S. Anand, Uniqueness of meromorphic functions with their derivatives sharing a small function, Tbilisi Math. J., 2017, 10(2), 145-155. doi: 10.1515/tmj-2017-0033

    CrossRef Google Scholar

    [16] P. Wang and L. Liao, On entire and meromorphic functions that share small functions with their derivatives, Int. J. Appl. Math. Anal. Appl., 2016, 11(1), 97-106.

    Google Scholar

    [17] C. Yang, On deficiencies of differential polynomials. Ⅱ, Math. Z., 1972, 125, 107-112. doi: 10.1007/BF01110921

    CrossRef Google Scholar

    [18] C. Yang and H. Yi, Uniqueness theory of meromorphic functions, Kluwer Academic Publishers Group, Dordrecht, 2003.

    Google Scholar

    [19] L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1983.

    Google Scholar

    [20] J. Zheng and S. Wang, Unicity of meromorphic functions and their derivatives, Adv. in Math. (China), 1992, 21(3), 334-341.

    Google Scholar

Article Metrics

Article views(2720) PDF downloads(870) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint