[1]
|
H. Chen, Y. C. Lee and C. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method, Phys. Scr., 1979, 20, 490-492. doi: 10.1088/0031-8949/20/3-4/026
CrossRef Google Scholar
|
[2]
|
J. Chai, B. Tian, X. Xie and Y. Sun, Conservation laws, bilinear Bäcklund transformations and solitons for a nonautonomous nonlinear Schrödinger equation with external potentials, Commun. Nonlinear Sci. Numer. Simulat., 2016, 39, 472-480. doi: 10.1016/j.cnsns.2016.02.024
CrossRef Google Scholar
|
[3]
|
C. He, Y. Tang, W. Ma and J. Ma, Interaction phenomena between a lump and other multi-solitons for the (2+1)-dimensional BLMP and Ito equations, Nonlinear Dynam., 2019, 95(1), 29-42. doi: 10.1007/s11071-018-4548-8
CrossRef Google Scholar
|
[4]
|
Z. Kang, T. Xia and W. Ma, Abundant multiwave solutions to the (3+1)-dimensional Sharma-Tasso-Olver-like equation, Proc. Rom. Acad. Ser. A, 2019, 20(2), 115-122.
Google Scholar
|
[5]
|
S. Lou and J. Lu, Special solutions from the variable separation approach: the Davey-Stewartson equation, J. Phys. A: Math. Gen., 1996, 29, 4209-4215. doi: 10.1088/0305-4470/29/14/038
CrossRef Google Scholar
|
[6]
|
J. Liu, L. Zhou and Y. He, Multiple soliton solutions for the new (2+1)-dimensional Korteweg-de Vries equation by multiple exp-function method, Appl. Math. Lett., 2018, 80, 71-78. doi: 10.1016/j.aml.2018.01.010
CrossRef Google Scholar
|
[7]
|
Z. Lan, Y. Gao, J. Yang, C. Su, C. Zhao and Z. Gao, Solitons and Bäcklund transformation for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Appl. Math. Lett., 2016, 60, 96-100. doi: 10.1016/j.aml.2016.03.021
CrossRef Google Scholar
|
[8]
|
J. Liu and Y. He, Abundant lump and lump-kink solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Nonlinear Dynam., 2018, 92(3), 1103-1108. doi: 10.1007/s11071-018-4111-7
CrossRef Google Scholar
|
[9]
|
W. Ma and Z. Zhu, Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput., 2012, 218(24), 11871-11879.
Google Scholar
|
[10]
|
W. Ma, Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system, J. Geom. Phys., 2018, 132, 45-54. doi: 10.1016/j.geomphys.2018.05.024
CrossRef Google Scholar
|
[11]
|
Y. Shi, Exact breather-type solutions and resonance-type solutions of the (2+1)-dimensional potential Burgers system, Romanian J. Phys., 2017, 62(5-6), Article no. 116, 1-16.
Google Scholar
|
[12]
|
X. Tang and Z. Liang, Variable separation solutions for the (3+1)-dimensional Jimbo-Miwa equation, Phys. Lett. A, 2006, 351(6), 398-402. doi: 10.1016/j.physleta.2005.11.035
CrossRef Google Scholar
|
[13]
|
Y. Tang, S. Tao, M. Zhou and Q. Guan, Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations, Nonlinear Dynam., 2017, 89(2), 1-14.
Google Scholar
|
[14]
|
A. M. Wazwaz and S. A. EI-Tantawy, Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota's method, Nonlinear Dynam., 2017, 88(4), 3017-3021.
Google Scholar
|
[15]
|
A. M. Wazwaz, Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations, Appl. Math. Lett., 2019, 88, 1-7. doi: 10.1016/j.aml.2018.08.004
CrossRef Google Scholar
|
[16]
|
X. Wang, Y. Li and Y. Chen, Generalized Darboux transformation and localized waves in coupled Hirota equations, Wave Motion, 2014, 51(7), 1149-1160. doi: 10.1016/j.wavemoti.2014.07.001
CrossRef Google Scholar
|
[17]
|
D. Wang, S. Yin, Y. Tian and Y. Liu, Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects, Appl. Math. Comput., 2014, 229, 296-309.
Google Scholar
|
[18]
|
A. M. Wazwaz and L. Kaur, Complex simplified Hirota's forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-Sine-Gordon equation, Nonlinear Dynam., 2019, 95(3), 2209-2215. doi: 10.1007/s11071-018-4686-z
CrossRef Google Scholar
|
[19]
|
C. Wang, Z. Dai and L. Liang, Exact three-wave solution for higher dimensional KdV-type equation, Appl. Math. Comput., 2010, 216(2), 501-505.
Google Scholar
|
[20]
|
C. Wang and Z. Dai, Breather-type multi-solitary waves to the Kadomtsev-Petviashvili equation with positive dispersion, Appl. Math. Comput., 2014, 235, 332-337.
Google Scholar
|
[21]
|
A. M. Wazwaz, Negative-order KdV equations in (3+1)-dimensions by using the KdV recursion operator, Waves Random Complex Media, 2017, 27(4), 768-778. doi: 10.1080/17455030.2017.1317115
CrossRef Google Scholar
|
[22]
|
T. Xia, X. Chen and D. Chen, Darboux transformation and soliton-like solutions of nonlinear Schrödinger equations, Chaos Solitons Fractals, 2005, 26(3), 889-896. doi: 10.1016/j.chaos.2005.01.030
CrossRef Google Scholar
|
[23]
|
M. Xu, S. Tian, J. Tu and T. Zhang, Lie symmetry analysis, conservation laws, solitary and periodic waves for a coupled Burgers equation, Superlattice Microst., 2017, 101, 415-428. doi: 10.1016/j.spmi.2016.11.050
CrossRef Google Scholar
|
[24]
|
M. Xu, T. Xia and B. Hu, Riemann-Hilbert approach and N-soliton solutions for the Chen-Lee-Liu equation, Modern Phys. Lett. B, 2019, 33(2), 1950002. doi: 10.1142/S0217984919500027
CrossRef Google Scholar
|
[25]
|
F. Yu, Localized analytical solutions and numerically stabilities of generalized Gross-Pitaevskii (GP(p, q)) equation with specific external potentials, Appl. Math. Lett., 2018, 85, 1-7. doi: 10.1016/j.aml.2018.05.003
CrossRef Google Scholar
|
[26]
|
F. Yu and L. Li, Inverse scattering transformation and soliton stability for a nonlinear Gross-Pitaevskii equation with external potentials, Appl. Math. Lett., 2019, 91, 41-47. doi: 10.1016/j.aml.2018.11.026
CrossRef Google Scholar
|
[27]
|
F. Yu, L. Feng and L. Li, Darboux transformations for super-Schrödinger equation, super-Dirac equation and their exact solutions, Nonlinear Dynam., 2017, 88(2), 1257-1271. doi: 10.1007/s11071-016-3308-x
CrossRef Google Scholar
|
[28]
|
X. Yong, G. Wang, W. Li, Y. Huang and J. Gao, On the Darboux transformation of a generalized inhomogeneous higher-order nonlinear Schrödinger equation, Nonlinear Dynam., 2017, 87(1), 75-82. doi: 10.1007/s11071-016-3026-4
CrossRef Google Scholar
|
[29]
|
H. Zhang, J. Li, T. Xu, Y. Zhang, W. Hu and B. Tian, Optical soliton solutions for two coupled nonlinear Schrödinger systems via Darboux transformation, Phys. Scr., 2007, 76, 452-460. doi: 10.1088/0031-8949/76/5/009
CrossRef Google Scholar
|
[30]
|
S. Zhang, S. Lou and C. Qu, New variable separation approach: application to nonlinear diffusion equations, J. Phys. A: Math. Gen., 2003, 36, 12223-12242. doi: 10.1088/0305-4470/36/49/006
CrossRef Google Scholar
|
[31]
|
Z. Zhao, Z. Dai and C. Wang, Extend three-wave method for the (2+1)-dimensional Ito equation, Appl. Math. Comput., 2010, 217(5), 2295-2300.
Google Scholar
|
[32]
|
Z. Zhao, Z. Dai and G. Mu, The breather-type and periodic-type solutions for the (2+1)-dimensional breaking soliton equation, Comput. Math. Appl., 2011, 61(8), 2048-2052. doi: 10.1016/j.camwa.2010.08.065
CrossRef Google Scholar
|