2020 Volume 10 Issue 2
Article Contents

Zhou-Zheng Kang, Tie-Cheng Xia. American Institute of Mathematical Sciences[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 729-739. doi: 10.11948/20190128
Citation: Zhou-Zheng Kang, Tie-Cheng Xia. American Institute of Mathematical Sciences[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 729-739. doi: 10.11948/20190128

American Institute of Mathematical Sciences

  • This work aims to study the negative-order KdV equation in (3+1)-dimensions which is developed via using the recursion operator of the KdV equation by employing the three-wave methods. As a consequence, a variety of novel multiwave solutions with several arbitrary parameters to the considered equation are presented. Moreover, selecting particular values for the parameters, some graphs are plotted to show the spatial structures and dynamics of the resulting solutions. These results enrich the variety of the dynamics in the field of nonlinear waves.
    MSC: 35Q53, 35A25, 35C99
  • 加载中
  • [1] H. Chen, Y. C. Lee and C. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method, Phys. Scr., 1979, 20, 490-492. doi: 10.1088/0031-8949/20/3-4/026

    CrossRef Google Scholar

    [2] J. Chai, B. Tian, X. Xie and Y. Sun, Conservation laws, bilinear Bäcklund transformations and solitons for a nonautonomous nonlinear Schrödinger equation with external potentials, Commun. Nonlinear Sci. Numer. Simulat., 2016, 39, 472-480. doi: 10.1016/j.cnsns.2016.02.024

    CrossRef Google Scholar

    [3] C. He, Y. Tang, W. Ma and J. Ma, Interaction phenomena between a lump and other multi-solitons for the (2+1)-dimensional BLMP and Ito equations, Nonlinear Dynam., 2019, 95(1), 29-42. doi: 10.1007/s11071-018-4548-8

    CrossRef Google Scholar

    [4] Z. Kang, T. Xia and W. Ma, Abundant multiwave solutions to the (3+1)-dimensional Sharma-Tasso-Olver-like equation, Proc. Rom. Acad. Ser. A, 2019, 20(2), 115-122.

    Google Scholar

    [5] S. Lou and J. Lu, Special solutions from the variable separation approach: the Davey-Stewartson equation, J. Phys. A: Math. Gen., 1996, 29, 4209-4215. doi: 10.1088/0305-4470/29/14/038

    CrossRef Google Scholar

    [6] J. Liu, L. Zhou and Y. He, Multiple soliton solutions for the new (2+1)-dimensional Korteweg-de Vries equation by multiple exp-function method, Appl. Math. Lett., 2018, 80, 71-78. doi: 10.1016/j.aml.2018.01.010

    CrossRef Google Scholar

    [7] Z. Lan, Y. Gao, J. Yang, C. Su, C. Zhao and Z. Gao, Solitons and Bäcklund transformation for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics, Appl. Math. Lett., 2016, 60, 96-100. doi: 10.1016/j.aml.2016.03.021

    CrossRef Google Scholar

    [8] J. Liu and Y. He, Abundant lump and lump-kink solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation, Nonlinear Dynam., 2018, 92(3), 1103-1108. doi: 10.1007/s11071-018-4111-7

    CrossRef Google Scholar

    [9] W. Ma and Z. Zhu, Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput., 2012, 218(24), 11871-11879.

    Google Scholar

    [10] W. Ma, Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system, J. Geom. Phys., 2018, 132, 45-54. doi: 10.1016/j.geomphys.2018.05.024

    CrossRef Google Scholar

    [11] Y. Shi, Exact breather-type solutions and resonance-type solutions of the (2+1)-dimensional potential Burgers system, Romanian J. Phys., 2017, 62(5-6), Article no. 116, 1-16.

    Google Scholar

    [12] X. Tang and Z. Liang, Variable separation solutions for the (3+1)-dimensional Jimbo-Miwa equation, Phys. Lett. A, 2006, 351(6), 398-402. doi: 10.1016/j.physleta.2005.11.035

    CrossRef Google Scholar

    [13] Y. Tang, S. Tao, M. Zhou and Q. Guan, Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations, Nonlinear Dynam., 2017, 89(2), 1-14.

    Google Scholar

    [14] A. M. Wazwaz and S. A. EI-Tantawy, Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota's method, Nonlinear Dynam., 2017, 88(4), 3017-3021.

    Google Scholar

    [15] A. M. Wazwaz, Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations, Appl. Math. Lett., 2019, 88, 1-7. doi: 10.1016/j.aml.2018.08.004

    CrossRef Google Scholar

    [16] X. Wang, Y. Li and Y. Chen, Generalized Darboux transformation and localized waves in coupled Hirota equations, Wave Motion, 2014, 51(7), 1149-1160. doi: 10.1016/j.wavemoti.2014.07.001

    CrossRef Google Scholar

    [17] D. Wang, S. Yin, Y. Tian and Y. Liu, Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects, Appl. Math. Comput., 2014, 229, 296-309.

    Google Scholar

    [18] A. M. Wazwaz and L. Kaur, Complex simplified Hirota's forms and Lie symmetry analysis for multiple real and complex soliton solutions of the modified KdV-Sine-Gordon equation, Nonlinear Dynam., 2019, 95(3), 2209-2215. doi: 10.1007/s11071-018-4686-z

    CrossRef Google Scholar

    [19] C. Wang, Z. Dai and L. Liang, Exact three-wave solution for higher dimensional KdV-type equation, Appl. Math. Comput., 2010, 216(2), 501-505.

    Google Scholar

    [20] C. Wang and Z. Dai, Breather-type multi-solitary waves to the Kadomtsev-Petviashvili equation with positive dispersion, Appl. Math. Comput., 2014, 235, 332-337.

    Google Scholar

    [21] A. M. Wazwaz, Negative-order KdV equations in (3+1)-dimensions by using the KdV recursion operator, Waves Random Complex Media, 2017, 27(4), 768-778. doi: 10.1080/17455030.2017.1317115

    CrossRef Google Scholar

    [22] T. Xia, X. Chen and D. Chen, Darboux transformation and soliton-like solutions of nonlinear Schrödinger equations, Chaos Solitons Fractals, 2005, 26(3), 889-896. doi: 10.1016/j.chaos.2005.01.030

    CrossRef Google Scholar

    [23] M. Xu, S. Tian, J. Tu and T. Zhang, Lie symmetry analysis, conservation laws, solitary and periodic waves for a coupled Burgers equation, Superlattice Microst., 2017, 101, 415-428. doi: 10.1016/j.spmi.2016.11.050

    CrossRef Google Scholar

    [24] M. Xu, T. Xia and B. Hu, Riemann-Hilbert approach and N-soliton solutions for the Chen-Lee-Liu equation, Modern Phys. Lett. B, 2019, 33(2), 1950002. doi: 10.1142/S0217984919500027

    CrossRef Google Scholar

    [25] F. Yu, Localized analytical solutions and numerically stabilities of generalized Gross-Pitaevskii (GP(p, q)) equation with specific external potentials, Appl. Math. Lett., 2018, 85, 1-7. doi: 10.1016/j.aml.2018.05.003

    CrossRef Google Scholar

    [26] F. Yu and L. Li, Inverse scattering transformation and soliton stability for a nonlinear Gross-Pitaevskii equation with external potentials, Appl. Math. Lett., 2019, 91, 41-47. doi: 10.1016/j.aml.2018.11.026

    CrossRef Google Scholar

    [27] F. Yu, L. Feng and L. Li, Darboux transformations for super-Schrödinger equation, super-Dirac equation and their exact solutions, Nonlinear Dynam., 2017, 88(2), 1257-1271. doi: 10.1007/s11071-016-3308-x

    CrossRef Google Scholar

    [28] X. Yong, G. Wang, W. Li, Y. Huang and J. Gao, On the Darboux transformation of a generalized inhomogeneous higher-order nonlinear Schrödinger equation, Nonlinear Dynam., 2017, 87(1), 75-82. doi: 10.1007/s11071-016-3026-4

    CrossRef Google Scholar

    [29] H. Zhang, J. Li, T. Xu, Y. Zhang, W. Hu and B. Tian, Optical soliton solutions for two coupled nonlinear Schrödinger systems via Darboux transformation, Phys. Scr., 2007, 76, 452-460. doi: 10.1088/0031-8949/76/5/009

    CrossRef Google Scholar

    [30] S. Zhang, S. Lou and C. Qu, New variable separation approach: application to nonlinear diffusion equations, J. Phys. A: Math. Gen., 2003, 36, 12223-12242. doi: 10.1088/0305-4470/36/49/006

    CrossRef Google Scholar

    [31] Z. Zhao, Z. Dai and C. Wang, Extend three-wave method for the (2+1)-dimensional Ito equation, Appl. Math. Comput., 2010, 217(5), 2295-2300.

    Google Scholar

    [32] Z. Zhao, Z. Dai and G. Mu, The breather-type and periodic-type solutions for the (2+1)-dimensional breaking soliton equation, Comput. Math. Appl., 2011, 61(8), 2048-2052. doi: 10.1016/j.camwa.2010.08.065

    CrossRef Google Scholar

Figures(4)

Article Metrics

Article views(2652) PDF downloads(856) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint