[1]
|
A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal., 1973, 14, 349-381. doi: 10.1016/0022-1236(73)90051-7
CrossRef Google Scholar
|
[2]
|
C. Bai, Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem, Electron. J. Differ. Equ., 2016, 2012, 1-9.
Google Scholar
|
[3]
|
G. Bonanno, R. Rodrguezpez and S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2014, 3, 717-744.
Google Scholar
|
[4]
|
G. Chai and J. Chen, Existence of solutions for impulsive fractional boundary value problems via variational method, Bound. Value Probl., 2017, 2017, 23. doi: 10.1186/s13661-017-0755-3
CrossRef Google Scholar
|
[5]
|
I. Cabrera, J. Harjani and K. Sadarangani, Existence and uniqueness of solutions for a boundary value problem of fractional type with nonlocal integral boundary conditions in Holder Spaces, Mediterr. J. Math., 2018, 15, 98. doi: 10.1007/s00009-018-1142-8
CrossRef Google Scholar
|
[6]
|
T. Chen and W. Liu, Solvability of fractional boundary value problem with p-Laplacian via critical point theory, Bound. Value Probl., 2016, 2016, 75. doi: 10.1186/s13661-016-0583-x
CrossRef Google Scholar
|
[7]
|
A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl., 2004, 1, 30-42.
Google Scholar
|
[8]
|
D. Guo and V. Lakskmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal-Theor., 1987, 11, 623-632. doi: 10.1016/0362-546X(87)90077-0
CrossRef Google Scholar
|
[9]
|
S. Heidarkhani, M. Ferrara, G. Caristi and A. Salari, Existence of three solutions for impulsive nonlinear fractional boundary value problems, Opuscula Math., 2017, 37, 281-301. doi: 10.7494/OpMath.2017.37.2.281
CrossRef Google Scholar
|
[10]
|
S. Heidarkhani and A. Salari, Nontrivial solutions for impulsive fractional differential systems through variational methods, Comput. Math. Appl., 2016. DOI:org/10.1016/j.camwa.2016.04.016.
Google Scholar
|
[11]
|
T. Hartley, C. Lorenzo and H. K. Qammer, Chaos in a fractional order Chua's system, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 1995, 42, 485-490. doi: 10.1109/81.404062
CrossRef Google Scholar
|
[12]
|
X. Hao, H. Wang, L. Liu and Y. Cui, Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator, Bound. Value Probl., 2017, 2017, 182. doi: 10.1186/s13661-017-0915-5
CrossRef Google Scholar
|
[13]
|
Z. Han and H. Lu, Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian, Appl. Math. Comput., 2015, 257, 526-536.
Google Scholar
|
[14]
|
F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos., 2012, 22, 1250086 (17 pages). doi: 10.1142/S0218127412500861
CrossRef Google Scholar
|
[15]
|
F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62, 1181-1199. doi: 10.1016/j.camwa.2011.03.086
CrossRef Google Scholar
|
[16]
|
A. Kilbas, H. Srivastava and J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
Google Scholar
|
[17]
|
C. Li, R. Agarwal, Y. Pu and C. Tang, Nonconstant periodic solutions for a class of ordinary p-Laplacian systems, Bound. Value Probl., 2016, 2016: 213. doi: 10.1186/s13661-016-0721-5
CrossRef Google Scholar
|
[18]
|
D. Li, F. Chen and Y. An, Existence of solutions for fractional differential equation with p-Laplacian through variational method, J. Appl. Anal. Comput., 2018, 8, 1778-1795.
Google Scholar
|
[19]
|
D. Li, F. Chen and Y. An, Existence and multiplicity of nontrivial solutions for nonlinear fractional differential systems with p-Laplacian via critical point theory, Math. Meth. Appl. Sci., 2018, 41, 3197-3212. doi: 10.1002/mma.4810
CrossRef Google Scholar
|
[20]
|
F. Li, Z. Liang and Q. Zhan, Existence of solutions to a class of nonlinear second order two-point boundary value problems, J. Math. Anal. Appl., 2005, 312, 357-373. doi: 10.1016/j.jmaa.2005.03.043
CrossRef Google Scholar
|
[21]
|
L. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg.SSR, 1945, 9, 7-10. doi: 10.1097/TA.0b013e318184ba88
CrossRef Google Scholar
|
[22]
|
T. Lv, H. Pang and L. Cao, Existence results for fractional differential equations with multistrip riemann-stieltjes integral boundary conditions, Discrete Dyn. Nat. Soc., 2018, 2018, 1-19.
Google Scholar
|
[23]
|
X. Liu and M. Jia, The positive solutions for integral boundary value problem of fractional p-Laplacian equation with mixed derivatives, Mediterr. J. Math., 2017. DOI: 10.1007/s00009-017-0895-9.
CrossRef Google Scholar
|
[24]
|
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.
Google Scholar
|
[25]
|
N. Nyamoradi and E. Tayyebi, Existence of solutions for a class of fractional boundary value equations with impulsive effects via critical point theory, Mediterr. J. Math., 2018, 15, 79. doi: 10.1007/s00009-018-1122-z
CrossRef Google Scholar
|
[26]
|
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
Google Scholar
|
[27]
|
P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conference Board of the Mathematical Sciences, 1986, 65, 9-30.
Google Scholar
|
[28]
|
J. Simon, R$\acute{e}$gularit$\acute{e}$ de la solution d'un probl$\grave{e}$me aux limites non lin$\acute{e}$aires, Ann. Fac. Sci., Toulouse, 1981, 3, 247-274.
$\acute{e}$gularit$\acute{e}$ de la solution d'un probl$\grave{e}$me aux limites non lin$\acute{e}$aires, Ann. Fac. Sci." target="_blank">Google Scholar
|
[29]
|
Q. Song and Z. Bai, Positive solutions of fractional differential equations involving the Riemann-Stieltjes integral boundary condition, Adv. Differ. Equ-Ny., 2018, 2018: 183. doi: 10.1186/s13662-018-1633-8
CrossRef Google Scholar
|
[30]
|
L. Yin, J. Yao, Q. Zhang and C. Zhao, Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth, Discrete Cont. Dyn-B., 2017, 37, 2207-2226. doi: 10.3934/dcds.2017095
CrossRef Google Scholar
|
[31]
|
Y. Zhao, S. Sun and Y. Zhang, Existence and uniqueness of solutions to a fractional difference equation with p-Laplacian operator, J. Appl. Math. Comput., 2017, 54, 183-197. doi: 10.1007/s12190-016-1003-1
CrossRef Google Scholar
|
[32]
|
Y. Zhao and L. Tang Multiplicity results for impulsive fractional differential equations with p-Laplacian via variational methods, Bound. Value Probl., 2017, 2017: 123. doi: 10.1186/s13661-017-0855-0
CrossRef Google Scholar
|