2020 Volume 10 Issue 2
Article Contents

Dongping Li, Fangqi Chen, Yukun An. POSITIVE SOLUTIONS FOR A P-LAPLACIAN TYPE SYSTEM OF IMPULSIVE FRACTIONAL BOUNDARY VALUE PROBLEM$ ^* $[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 740-759. doi: 10.11948/20190131
Citation: Dongping Li, Fangqi Chen, Yukun An. POSITIVE SOLUTIONS FOR A P-LAPLACIAN TYPE SYSTEM OF IMPULSIVE FRACTIONAL BOUNDARY VALUE PROBLEM$ ^* $[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 740-759. doi: 10.11948/20190131

POSITIVE SOLUTIONS FOR A P-LAPLACIAN TYPE SYSTEM OF IMPULSIVE FRACTIONAL BOUNDARY VALUE PROBLEM$ ^* $

  • Corresponding authors: Email address: li_dongping@126.com (D. Li);  Email address: fangqichen@nuaa.edu.cn (F. Chen);  Email address: anykna@nuaa.edu.cn (Y. An)
  • Fund Project: This work is supported by the National Natural Science Foundation of China(Nos. 11872201, 11572148), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX18_0242) and the Nanjing University of Aeronautics and Astronautics PhD short-term visiting scholar project(No. 190108DF08)
  • In this paper, the aim is to discuss a class of p-Laplacian type fractional Dirichlet's boundary value problem involving impulsive impacts. Based on the approaches of variational method and the properties of fractional derivatives on the reflexive Banach spaces, the existence results of positive solutions for our equations are established. Two examples are given at the end of each main result.
    MSC: 26A33, 34B15, 35A15
  • 加载中
  • [1] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal., 1973, 14, 349-381. doi: 10.1016/0022-1236(73)90051-7

    CrossRef Google Scholar

    [2] C. Bai, Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem, Electron. J. Differ. Equ., 2016, 2012, 1-9.

    Google Scholar

    [3] G. Bonanno, R. Rodrguezpez and S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2014, 3, 717-744.

    Google Scholar

    [4] G. Chai and J. Chen, Existence of solutions for impulsive fractional boundary value problems via variational method, Bound. Value Probl., 2017, 2017, 23. doi: 10.1186/s13661-017-0755-3

    CrossRef Google Scholar

    [5] I. Cabrera, J. Harjani and K. Sadarangani, Existence and uniqueness of solutions for a boundary value problem of fractional type with nonlocal integral boundary conditions in Holder Spaces, Mediterr. J. Math., 2018, 15, 98. doi: 10.1007/s00009-018-1142-8

    CrossRef Google Scholar

    [6] T. Chen and W. Liu, Solvability of fractional boundary value problem with p-Laplacian via critical point theory, Bound. Value Probl., 2016, 2016, 75. doi: 10.1186/s13661-016-0583-x

    CrossRef Google Scholar

    [7] A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl., 2004, 1, 30-42.

    Google Scholar

    [8] D. Guo and V. Lakskmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal-Theor., 1987, 11, 623-632. doi: 10.1016/0362-546X(87)90077-0

    CrossRef Google Scholar

    [9] S. Heidarkhani, M. Ferrara, G. Caristi and A. Salari, Existence of three solutions for impulsive nonlinear fractional boundary value problems, Opuscula Math., 2017, 37, 281-301. doi: 10.7494/OpMath.2017.37.2.281

    CrossRef Google Scholar

    [10] S. Heidarkhani and A. Salari, Nontrivial solutions for impulsive fractional differential systems through variational methods, Comput. Math. Appl., 2016. DOI:org/10.1016/j.camwa.2016.04.016.

    Google Scholar

    [11] T. Hartley, C. Lorenzo and H. K. Qammer, Chaos in a fractional order Chua's system, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 1995, 42, 485-490. doi: 10.1109/81.404062

    CrossRef Google Scholar

    [12] X. Hao, H. Wang, L. Liu and Y. Cui, Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator, Bound. Value Probl., 2017, 2017, 182. doi: 10.1186/s13661-017-0915-5

    CrossRef Google Scholar

    [13] Z. Han and H. Lu, Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian, Appl. Math. Comput., 2015, 257, 526-536.

    Google Scholar

    [14] F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos., 2012, 22, 1250086 (17 pages). doi: 10.1142/S0218127412500861

    CrossRef Google Scholar

    [15] F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62, 1181-1199. doi: 10.1016/j.camwa.2011.03.086

    CrossRef Google Scholar

    [16] A. Kilbas, H. Srivastava and J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.

    Google Scholar

    [17] C. Li, R. Agarwal, Y. Pu and C. Tang, Nonconstant periodic solutions for a class of ordinary p-Laplacian systems, Bound. Value Probl., 2016, 2016: 213. doi: 10.1186/s13661-016-0721-5

    CrossRef Google Scholar

    [18] D. Li, F. Chen and Y. An, Existence of solutions for fractional differential equation with p-Laplacian through variational method, J. Appl. Anal. Comput., 2018, 8, 1778-1795.

    Google Scholar

    [19] D. Li, F. Chen and Y. An, Existence and multiplicity of nontrivial solutions for nonlinear fractional differential systems with p-Laplacian via critical point theory, Math. Meth. Appl. Sci., 2018, 41, 3197-3212. doi: 10.1002/mma.4810

    CrossRef Google Scholar

    [20] F. Li, Z. Liang and Q. Zhan, Existence of solutions to a class of nonlinear second order two-point boundary value problems, J. Math. Anal. Appl., 2005, 312, 357-373. doi: 10.1016/j.jmaa.2005.03.043

    CrossRef Google Scholar

    [21] L. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg.SSR, 1945, 9, 7-10. doi: 10.1097/TA.0b013e318184ba88

    CrossRef Google Scholar

    [22] T. Lv, H. Pang and L. Cao, Existence results for fractional differential equations with multistrip riemann-stieltjes integral boundary conditions, Discrete Dyn. Nat. Soc., 2018, 2018, 1-19.

    Google Scholar

    [23] X. Liu and M. Jia, The positive solutions for integral boundary value problem of fractional p-Laplacian equation with mixed derivatives, Mediterr. J. Math., 2017. DOI: 10.1007/s00009-017-0895-9.

    CrossRef Google Scholar

    [24] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.

    Google Scholar

    [25] N. Nyamoradi and E. Tayyebi, Existence of solutions for a class of fractional boundary value equations with impulsive effects via critical point theory, Mediterr. J. Math., 2018, 15, 79. doi: 10.1007/s00009-018-1122-z

    CrossRef Google Scholar

    [26] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

    Google Scholar

    [27] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conference Board of the Mathematical Sciences, 1986, 65, 9-30.

    Google Scholar

    [28] J. Simon, R$\acute{e}$gularit$\acute{e}$ de la solution d'un probl$\grave{e}$me aux limites non lin$\acute{e}$aires, Ann. Fac. Sci., Toulouse, 1981, 3, 247-274.

    $\acute{e}$gularit$\acute{e}$ de la solution d'un probl$\grave{e}$me aux limites non lin$\acute{e}$aires, Ann. Fac. Sci." target="_blank">Google Scholar

    [29] Q. Song and Z. Bai, Positive solutions of fractional differential equations involving the Riemann-Stieltjes integral boundary condition, Adv. Differ. Equ-Ny., 2018, 2018: 183. doi: 10.1186/s13662-018-1633-8

    CrossRef Google Scholar

    [30] L. Yin, J. Yao, Q. Zhang and C. Zhao, Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth, Discrete Cont. Dyn-B., 2017, 37, 2207-2226. doi: 10.3934/dcds.2017095

    CrossRef Google Scholar

    [31] Y. Zhao, S. Sun and Y. Zhang, Existence and uniqueness of solutions to a fractional difference equation with p-Laplacian operator, J. Appl. Math. Comput., 2017, 54, 183-197. doi: 10.1007/s12190-016-1003-1

    CrossRef Google Scholar

    [32] Y. Zhao and L. Tang Multiplicity results for impulsive fractional differential equations with p-Laplacian via variational methods, Bound. Value Probl., 2017, 2017: 123. doi: 10.1186/s13661-017-0855-0

    CrossRef Google Scholar

Article Metrics

Article views(2797) PDF downloads(948) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint