Citation: | Suyun Wang, Yanhong Zhang, Ruyun Ma. THREE RADIAL POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC PROBLEMS IN ${{\mathbb{R}}^{N}}$ $ ^* $[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 760-770. doi: 10.11948/20190145 |
[1] | G. Dai, X. Han and R. Ma, Unilateral global bifurcation and nodal solutions for the p-Laplacian with sign-changing weight, Complex Variables and Elliptic Equations, 2014, 59(6), 847–862. doi: 10.1080/17476933.2013.791686 |
[2] |
G. Dai, J. Yao and F. Li, Spectrum and bifurcation for semilinear elliptic problems in ${{\mathbb{R}}^{N}}$, J. Differential Equations, 2017, 263(9), 5939–5967. doi: 10.1016/j.jde.2017.07.004
CrossRef ${{\mathbb{R}}^{N}}$" target="_blank">Google Scholar |
[3] | E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J., 1974, 23(11), 1069–1076. doi: 10.1512/iumj.1974.23.23087 |
[4] |
A. L. Edelson and M. Furi, Global solution branches for semilinear equations in ${{\mathbb{R}}^{n}}$, Nonlinear Anal., 1997, 28(9), 1521–1532. doi: 10.1016/S0362-546X(96)00018-1
CrossRef ${{\mathbb{R}}^{n}}$" target="_blank">Google Scholar |
[5] |
A. L. Edelson, A. J. Rumbos, Linear and semilinear eigenvalue problems in ${{\mathbb{R}}^{n}}$, Comm. Partial Differential Equations, 1993, 18(1–2), 215–240. doi: 10.1080/03605309308820928
CrossRef ${{\mathbb{R}}^{n}}$" target="_blank">Google Scholar |
[6] | D. Motreanu, V. Motreanu and N. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5 |
[7] | P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 1971, 7(3), 487–513. doi: 10.1016/0022-1236(71)90030-9 |
[8] | A. J. Rumbos and A. L. Edelson, Bifurcation properties of semilinear elliptic equations in ${{\mathbb{R}}^{n}}$, Differential Integral Equations, 1994, 7(2), 399–410. |
[9] | I. Sim and S. Tanaka, Three positive solutions for one-dimensional p-Laplacian problem with sign-changing weight, Appl. Math. Lett., 2015, 49, 42–50. doi: 10.1016/j.aml.2015.04.007 |
[10] | H. Xiang, Y. Wang and H. Huo, Analysis of the binge drinking models with demographics and nonlinear infectivity of networks, Journal of Applied Analysis and Computation, 2018, 8(5), 1535–1554. |