[1]
|
P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 2014, 359(1–2), 471–536. doi: 10.1007/s00208-013-1001-7
CrossRef Google Scholar
|
[2]
|
P. Baldi, M. Berti and R. Montalto, KAM for autonomous quasi-linear perturbations of KdV, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2016, 33(6), 1589–1638. doi: 10.1016/j.anihpc.2015.07.003
CrossRef Google Scholar
|
[3]
|
L. Biasco, J.E. Massetti and M. Procesi, Almost periodic invariant tori for the NLS on the circle, ArXiv: 1905.07576, 2019.
Google Scholar
|
[4]
|
J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., 1996, 6(2), 201–230. doi: 10.1007/BF02247885
CrossRef Google Scholar
|
[5]
|
J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math. (2), 1998, 148(2), 363–439. doi: 10.2307/121001
CrossRef Google Scholar
|
[6]
|
J. Bourgain, Recent progress in quasi-periodic lattice Schrödinger operators and Hamiltonian partial differential equations, Uspekhi Mat. Nauk, 2004, 59(2(356)), 37–52.
Google Scholar
|
[7]
|
J. Bourgain, Green's function estimates for lattice Schrödinger operators and applications, Princeton University Press, Princeton, NJ, 2005. doi: 10.1515/9781400837144
CrossRef Google Scholar
|
[8]
|
J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 2005, 229(1), 62–94. doi: 10.1016/j.jfa.2004.10.019
CrossRef Google Scholar
|
[9]
|
H. Cong, J. Liu, Y. Shi and X. Yuan, The stability of full dimensional KAM tori for nonlinear Schrödinger equation, J. Differential Equations, 2018, 264(7), 4504–4563. doi: 10.1016/j.jde.2017.12.013
CrossRef Google Scholar
|
[10]
|
H. Cong, L. Mi, Y. Shi and Y. Wu, On the existence of full dimensional KAM torus for nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst., 2019, 39(11), 6599–6630. doi: 10.3934/dcds.2019287
CrossRef Google Scholar
|
[11]
|
W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 1993, 46(11), 1409–1498. doi: 10.1002/cpa.3160461102
CrossRef Google Scholar
|
[12]
|
W. Craig and P. A. Worfolk, An integrable normal form for water waves in infinite depth, Physica D: Nonlinear Phenomena, 1995, 84(3–4), 513–531. doi: 10.1016/0167-2789(95)00067-E
CrossRef Google Scholar
|
[13]
|
L. H. Eliasson and S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. of Math. (2), 2010, 172(1), 371–435.
Google Scholar
|
[14]
|
P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2012, 142(6), 1237–1262. doi: 10.1017/S0308210511000746
CrossRef Google Scholar
|
[15]
|
R. Feola and M. Procesi, Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Differential Equations, 2015, 259(7), 3389–3447. doi: 10.1016/j.jde.2015.04.025
CrossRef Google Scholar
|
[16]
|
J. Fröhlich, T. Spencer and C.E. Wayne, Localization in disordered, nonlinear dynamical systems, Journal of statistical physics, 1986, 42(3–4), 247–274. doi: 10.1007/BF01127712
CrossRef Google Scholar
|
[17]
|
J. Geng, Invariant tori of full dimension for a nonlinear Schrödinger equation, J. Differential Equations, 2012, 252(1), 1–34.
Google Scholar
|
[18]
|
J. Geng and X. Xu, Almost periodic solutions of one dimensional Schrödinger equation with the external parameters, J. Dynam. Differential Equations, 2016, 25(2), 435–450.
Google Scholar
|
[19]
|
A. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, Journal of Functional Analysis, 2014, 266(1), 139–176. doi: 10.1016/j.jfa.2013.08.027
CrossRef Google Scholar
|
[20]
|
T. Kappeler and J. Pöschel, KdV & KAM, Springer-Verlag, Berlin, 2003.
Google Scholar
|
[21]
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 204, 2006.
Google Scholar
|
[22]
|
S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications, 19, 2000.
Google Scholar
|
[23]
|
S. B. Kuksin, Fifteen years of KAM for PDE, Amer. Math. Soc. Transl., 2004, 212(2), 237–258.
Google Scholar
|
[24]
|
S. B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Springer-Verlag, 1993.
Google Scholar
|
[25]
|
S. B. Kuksin and J. Pöschel, Invariant cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Annals of Mathematics, 1996, 143(1), 149–179. doi: 10.2307/2118656
CrossRef Google Scholar
|
[26]
|
J. Li, Quasi-periodic solutions of a fractional nonlinear Schrödinger equation, Journal of Mathematical Physics, 2017, 58(10), 102701. doi: 10.1063/1.5005106
CrossRef Google Scholar
|
[27]
|
J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Comm. Math. Phys., 2011, 307(3), 629–673. doi: 10.1007/s00220-011-1353-3
CrossRef Google Scholar
|
[28]
|
N. Laskin, Fractional schrödinger equation, Physical Review E, 2002, 66(5), 056108. doi: 10.1103/PhysRevE.66.056108
CrossRef Google Scholar
|
[29]
|
H. Niu and J. Geng, Almost periodic solutions for a class of higher-dimensional beam equations, Nonlinearity, 2007, 20(11), 2499–2517. doi: 10.1088/0951-7715/20/11/003
CrossRef Google Scholar
|
[30]
|
J. Pöschel, Small divisors with spatial structure in infinite-dimensional Hamiltonian systems, Comm. Math. Phys., 1990, 127(2), 351–393. doi: 10.1007/BF02096763
CrossRef Google Scholar
|
[31]
|
J. Pöschel, On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergodic Theory Dynam. Systems, 2002, 22(5), 1537–1549. doi: 10.1017/S0143385702001086
CrossRef Google Scholar
|
[32]
|
X. Xu, Quasi-Periodic Solutions for Fractional Nonlinear Schrödinger Equation, Journal of Dynamics and Differential Equations, 2018, 30(4), 1855–1871. doi: 10.1007/s10884-017-9630-2
CrossRef Google Scholar
|
[33]
|
V. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Journal of Applied Mechanics and Technical Physics, 1968, 9(2), 190–194.
Google Scholar
|
[34]
|
J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 2011, 24(4), 1189–1228. doi: 10.1088/0951-7715/24/4/010
CrossRef Google Scholar
|