2020 Volume 10 Issue 2
Article Contents

Yuan Wu, Xiaoping Yuan. ON THE EXISTENCE OF FULL DIMENSIONAL KAM TORUS FOR FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 771-794. doi: 10.11948/20190292
Citation: Yuan Wu, Xiaoping Yuan. ON THE EXISTENCE OF FULL DIMENSIONAL KAM TORUS FOR FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 771-794. doi: 10.11948/20190292

ON THE EXISTENCE OF FULL DIMENSIONAL KAM TORUS FOR FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION

  • Corresponding author: Email address: 14110840003@fudan.edu.cn (Y. Wu) 
  • Fund Project: The author was supported by National Natural Science Foundation of China (Nos. 11790272 and 11411061)
  • In this paper, we study fractional nonlinear Schrödinger equation (FNLS) with periodic boundary condition $ \begin{equation} \textbf{i}u_{t} = -(-\Delta)^{s_{0}} u-V*u-\epsilon f(x)|u|^4u, \ \; \; x\in \mathbb{T}, \; \; t\in \mathbb{R}, \; \; s_{0}\in (\frac12, 1), \end{equation} $ where $ (-\Delta)^{s_{0}} $ is the Riesz fractional differentiation defined in [21] and $ V* $ is the Fourier multiplier defined by $ \widehat{V*u}(n) = V_n\widehat{u}(n), \ V_n\in\left[-1, 1\right], $ and $ f(x) $ is Gevrey smooth.\ We prove that for $ 0\leq|\epsilon|\ll1 $ and appropriate $ V $, \ the equation (1) admits a full dimensional KAM torus in the Gevrey space satisfying $ \frac12e^{-rn^{\theta}}\leq \left|q_n\right|\leq 2e^{-rn^{\theta}}, \theta\in (0, 1), $ which generalizes the results given by [8, 9, 10] to fractional nonlinear Schrödinger equation.
    MSC: 37K55, 37655
  • 加载中
  • [1] P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 2014, 359(1–2), 471–536. doi: 10.1007/s00208-013-1001-7

    CrossRef Google Scholar

    [2] P. Baldi, M. Berti and R. Montalto, KAM for autonomous quasi-linear perturbations of KdV, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2016, 33(6), 1589–1638. doi: 10.1016/j.anihpc.2015.07.003

    CrossRef Google Scholar

    [3] L. Biasco, J.E. Massetti and M. Procesi, Almost periodic invariant tori for the NLS on the circle, ArXiv: 1905.07576, 2019.

    Google Scholar

    [4] J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., 1996, 6(2), 201–230. doi: 10.1007/BF02247885

    CrossRef Google Scholar

    [5] J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math. (2), 1998, 148(2), 363–439. doi: 10.2307/121001

    CrossRef Google Scholar

    [6] J. Bourgain, Recent progress in quasi-periodic lattice Schrödinger operators and Hamiltonian partial differential equations, Uspekhi Mat. Nauk, 2004, 59(2(356)), 37–52.

    Google Scholar

    [7] J. Bourgain, Green's function estimates for lattice Schrödinger operators and applications, Princeton University Press, Princeton, NJ, 2005. doi: 10.1515/9781400837144

    CrossRef Google Scholar

    [8] J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 2005, 229(1), 62–94. doi: 10.1016/j.jfa.2004.10.019

    CrossRef Google Scholar

    [9] H. Cong, J. Liu, Y. Shi and X. Yuan, The stability of full dimensional KAM tori for nonlinear Schrödinger equation, J. Differential Equations, 2018, 264(7), 4504–4563. doi: 10.1016/j.jde.2017.12.013

    CrossRef Google Scholar

    [10] H. Cong, L. Mi, Y. Shi and Y. Wu, On the existence of full dimensional KAM torus for nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst., 2019, 39(11), 6599–6630. doi: 10.3934/dcds.2019287

    CrossRef Google Scholar

    [11] W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 1993, 46(11), 1409–1498. doi: 10.1002/cpa.3160461102

    CrossRef Google Scholar

    [12] W. Craig and P. A. Worfolk, An integrable normal form for water waves in infinite depth, Physica D: Nonlinear Phenomena, 1995, 84(3–4), 513–531. doi: 10.1016/0167-2789(95)00067-E

    CrossRef Google Scholar

    [13] L. H. Eliasson and S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. of Math. (2), 2010, 172(1), 371–435.

    Google Scholar

    [14] P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2012, 142(6), 1237–1262. doi: 10.1017/S0308210511000746

    CrossRef Google Scholar

    [15] R. Feola and M. Procesi, Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, J. Differential Equations, 2015, 259(7), 3389–3447. doi: 10.1016/j.jde.2015.04.025

    CrossRef Google Scholar

    [16] J. Fröhlich, T. Spencer and C.E. Wayne, Localization in disordered, nonlinear dynamical systems, Journal of statistical physics, 1986, 42(3–4), 247–274. doi: 10.1007/BF01127712

    CrossRef Google Scholar

    [17] J. Geng, Invariant tori of full dimension for a nonlinear Schrödinger equation, J. Differential Equations, 2012, 252(1), 1–34.

    Google Scholar

    [18] J. Geng and X. Xu, Almost periodic solutions of one dimensional Schrödinger equation with the external parameters, J. Dynam. Differential Equations, 2016, 25(2), 435–450.

    Google Scholar

    [19] A. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, Journal of Functional Analysis, 2014, 266(1), 139–176. doi: 10.1016/j.jfa.2013.08.027

    CrossRef Google Scholar

    [20] T. Kappeler and J. Pöschel, KdV & KAM, Springer-Verlag, Berlin, 2003.

    Google Scholar

    [21] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited, 204, 2006.

    Google Scholar

    [22] S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications, 19, 2000.

    Google Scholar

    [23] S. B. Kuksin, Fifteen years of KAM for PDE, Amer. Math. Soc. Transl., 2004, 212(2), 237–258.

    Google Scholar

    [24] S. B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Springer-Verlag, 1993.

    Google Scholar

    [25] S. B. Kuksin and J. Pöschel, Invariant cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Annals of Mathematics, 1996, 143(1), 149–179. doi: 10.2307/2118656

    CrossRef Google Scholar

    [26] J. Li, Quasi-periodic solutions of a fractional nonlinear Schrödinger equation, Journal of Mathematical Physics, 2017, 58(10), 102701. doi: 10.1063/1.5005106

    CrossRef Google Scholar

    [27] J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Comm. Math. Phys., 2011, 307(3), 629–673. doi: 10.1007/s00220-011-1353-3

    CrossRef Google Scholar

    [28] N. Laskin, Fractional schrödinger equation, Physical Review E, 2002, 66(5), 056108. doi: 10.1103/PhysRevE.66.056108

    CrossRef Google Scholar

    [29] H. Niu and J. Geng, Almost periodic solutions for a class of higher-dimensional beam equations, Nonlinearity, 2007, 20(11), 2499–2517. doi: 10.1088/0951-7715/20/11/003

    CrossRef Google Scholar

    [30] J. Pöschel, Small divisors with spatial structure in infinite-dimensional Hamiltonian systems, Comm. Math. Phys., 1990, 127(2), 351–393. doi: 10.1007/BF02096763

    CrossRef Google Scholar

    [31] J. Pöschel, On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergodic Theory Dynam. Systems, 2002, 22(5), 1537–1549. doi: 10.1017/S0143385702001086

    CrossRef Google Scholar

    [32] X. Xu, Quasi-Periodic Solutions for Fractional Nonlinear Schrödinger Equation, Journal of Dynamics and Differential Equations, 2018, 30(4), 1855–1871. doi: 10.1007/s10884-017-9630-2

    CrossRef Google Scholar

    [33] V. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Journal of Applied Mechanics and Technical Physics, 1968, 9(2), 190–194.

    Google Scholar

    [34] J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 2011, 24(4), 1189–1228. doi: 10.1088/0951-7715/24/4/010

    CrossRef Google Scholar

Article Metrics

Article views(3066) PDF downloads(846) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint