[1]
|
J. C. Brunelli, The short pulse hierarchy, Journal of mathematical physics, 2005, 46(12), 123507. doi: 10.1063/1.2146189
CrossRef Google Scholar
|
[2]
|
J. C. Brunelli, The bi-Hamiltonian structure of the short pulse equation, Physics Letters A, 2006, 353(6), 475-478. doi: 10.1016/j.physleta.2006.01.009
CrossRef Google Scholar
|
[3]
|
P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, Berlin, 1971.
Google Scholar
|
[4]
|
B. Feng, Complex short pulse and coupled complex short pulse equations, Physica D: Nonlinear Phenomena, 2015, 297, 62-75. doi: 10.1016/j.physd.2014.12.002
CrossRef Google Scholar
|
[5]
|
B. Feng, L. Ling and Z. Zhu, Defocusing complex short-pulse equation and its multi-dark-soliton solution, Physical Review E, 2016, 93(5), 052227. doi: 10.1103/PhysRevE.93.052227
CrossRef Google Scholar
|
[6]
|
V. K. Kuetche and T. C. Kofane, On two-loop soliton solution of the Schäfer- Wayne short-pulse equation using hirota's method and hodnett-moloney approach, Journal of the Physical Society of Japan, 2007, 76(2), 024004-024004. doi: 10.1143/JPSJ.76.024004
CrossRef Google Scholar
|
[7]
|
J. Li, Dynamical understanding of loop soliton solution for several nonlinear wave equations, Science in China Series A: Mathematics, 2007, 50(6), 773-785. doi: 10.1007/s11425-007-0039-y
CrossRef Google Scholar
|
[8]
|
J. Li, Singular nonlinear travelling wave equations: Bifurcations and exact solutions, Science Press, Beijing, 2013.
Google Scholar
|
[9]
|
J. Li, Variform exact one-peakon solutions for some singular nonlinear traveling wave equations of the first kind, International Journal of Bifurcation and Chaos, 2014, 24(12), 1450160. doi: 10.1142/S0218127414501600
CrossRef Google Scholar
|
[10]
|
J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, International Journal of Bifurcation and Chaos, 2007, 17(11), 4049-4065. doi: 10.1142/S0218127407019858
CrossRef Google Scholar
|
[11]
|
J. Li and Z. Qiao, Peakon, pseudo-peakon, and cuspon solutions for two generalized camassa-holm equations, Journal of mathematical physics, 2013, 54(12), 123501. doi: 10.1063/1.4835395
CrossRef Google Scholar
|
[12]
|
Y. Matsuno, Multiloop soliton and multibreather solutions of the short pulse model equation, Journal of the Physical Society of Japan, 2007, 76(8), 084003. doi: 10.1143/JPSJ.76.084003
CrossRef Google Scholar
|
[13]
|
Y. Matsuno, Periodic solutions of the short pulse model equation, Journal of Mathematical Physics, 2008, 49(7), 073508. doi: 10.1063/1.2951891
CrossRef Google Scholar
|
[14]
|
E. Parkes, Some periodic and solitary travelling-wave solutions of the shortpulse equation, Chaos, Solitons & Fractals, 2008, 38(1), 154-159.
Google Scholar
|
[15]
|
A. Sakovich and S. Sakovich, The short pulse equation is integrable, Journal of the Physical Society of Japan, 2005, 74(1), 239-241. doi: 10.1143/JPSJ.74.239
CrossRef Google Scholar
|
[16]
|
A. Sakovich and S. Sakovich, Solitary wave solutions of the short pulse equation, Journal of Physics A: Mathematical and General, 2006, 39(22), L361. doi: 10.1088/0305-4470/39/22/L03
CrossRef Google Scholar
|
[17]
|
T. Schäfer and C. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Physica D: Nonlinear Phenomena, 2004, 196(1-2), 90-105. doi: 10.1016/j.physd.2004.04.007
CrossRef Google Scholar
|
[18]
|
S. Shen, B. Feng and Y. Ohta, From the real and complex coupled dispersionless equations to the real and complex short pulse equations, Studies in Applied Mathematics, 2016, 136(1), 64-88. doi: 10.1111/sapm.12092
CrossRef Google Scholar
|
[19]
|
J. Song and J. Li, Bifurcations and exact travelling wave solutions for a shallow water wave model with a non-stationary bottom surface, Journal of Applied Analysis and Computation, 2020, 10(1), 350-360.
Google Scholar
|
[20]
|
A. Yariv and Y. Pochi, Optical waves in crystals: propagation and control of laser radiation, Wiley, New York, 1984.
Google Scholar
|
[21]
|
P. Yu, M. Han and Y. Bai, Dynamics and bifurcation study on an extended lorenz system, Journal of Nonlinear Modelling Analysis, 2019, 1(1), 107-128.
Google Scholar
|
[22]
|
Y. Zhou, J. Song and T. Han, Solitary waves, periodic peakons, pseudo-peakons and compactons given by three ion-acoustic wave models in electron plasmas, Journal of Applied Analysis and Computation, 2019, 9(2), 810-828.
Google Scholar
|