2020 Volume 10 Issue 2
Article Contents

Maoan Han, Shanshan Liu. FURTHER STUDIES ON LIMIT CYCLE BIFURCATIONS FOR PIECEWISE SMOOTH NEAR-HAMILTONIAN SYSTEMS WITH MULTIPLE PARAMETERS$ ^* $[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 816-829. doi: 10.11948/20200003
Citation: Maoan Han, Shanshan Liu. FURTHER STUDIES ON LIMIT CYCLE BIFURCATIONS FOR PIECEWISE SMOOTH NEAR-HAMILTONIAN SYSTEMS WITH MULTIPLE PARAMETERS$ ^* $[J]. Journal of Applied Analysis & Computation, 2020, 10(2): 816-829. doi: 10.11948/20200003

FURTHER STUDIES ON LIMIT CYCLE BIFURCATIONS FOR PIECEWISE SMOOTH NEAR-HAMILTONIAN SYSTEMS WITH MULTIPLE PARAMETERS$ ^* $

  • Corresponding author: Email address: mahan@shnu.edu.cn (M. Han) 
  • Fund Project: The author was supported by National Natural Science Foundation of China (Nos. 11931016 and 11771296)
  • This paper investigates the limit cycle bifurcations for piecewise smooth near-Hamiltonian systems with multiple parameters. The formulas for the second and third term in expansions of the first order Melnikov function are derived respectively. The main results improve some known conclusions.
    MSC: 37G15, 34C07
  • 加载中
  • [1] B. Brogliato, Nonsmooth Impact Mechanics. Models, Dynamics and Control, Springer, London, 1996. doi: 10.1007/BFb0027733

    CrossRef Google Scholar

    [2] R. Benterki, J. Llibre, Periodic solutions of the Duffing differential equation revisited via the averaging theory, Journal of Nonlinear Modeling and Analysis, 2019, 1(2), 167–177.

    Google Scholar

    [3] X. Bo, Y. Tian, Limit cycles for a class of piecewise smooth quadratic differential systems with multiple parameters, International Journal of Bifurcation and Chaos, 2016, 26(10), 1650171. doi: 10.1142/S0218127416501716

    CrossRef Google Scholar

    [4] S. Chen, Stability and perturbations of generalized heteroclinic loops in piecewise smooth systems, Qualitative Theory of Dynamical Systems, 2018, 17, 563–581. doi: 10.1007/s12346-017-0256-x

    CrossRef Google Scholar

    [5] V. Carmona, S. Fernández-García, E. Freire, F. Torres, Melnikov theory for a class of planar hybrid system, Physica D, 2013, 248, 44–54. doi: 10.1016/j.physd.2013.01.002

    CrossRef Google Scholar

    [6] M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.

    Google Scholar

    [7] M. Han, On the maximum number of periodic solution of piecewise smooth periodic equations by average method, Journal of Applied Analysis and Computation, 2017, 7(2), 788–794.

    Google Scholar

    [8] M. Han, V G. Romanovski, X. Zhang, Equivalence of the Melnikov function method and the averaging method, Qualitative Theory of Dynamical Systems, 2016, 15(2), 471–479. doi: 10.1007/s12346-015-0179-3

    CrossRef Google Scholar

    [9] M. Han, L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, Journal of Applied Analysis and Computation, 2015, 5(4), 809–815.

    Google Scholar

    [10] M. Han, L. Sheng, Xiang Zhang, Bifurcation theory for finitely smooth planar autonomous differential systems, Journal of Differential Equations, 2018, 264, 3596–3618. doi: 10.1016/j.jde.2017.11.025

    CrossRef Google Scholar

    [11] M. Han, Y. Xiong, Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters, Chaos Solitons Fractals, 2014, 68, 20–29. doi: 10.1016/j.chaos.2014.07.005

    CrossRef Google Scholar

    [12] M. Kunze, Piecewise Smooth Dynamical Systems, Springer-Verlag, Berlin, 2000.

    Google Scholar

    [13] F. Liang, M. Han, Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems, Chaos Solitons Fractals, 2012, 45, 454–464. doi: 10.1016/j.chaos.2011.09.013

    CrossRef Google Scholar

    [14] J. Llibre, A. C. Mereu, D. D. Novaes, Averaging theory for discontinuous piecewise differential systems, Journal of Differential Equations, 2015, 258(11), 4007–4032. doi: 10.1016/j.jde.2015.01.022

    CrossRef Google Scholar

    [15] J. Llibre, D. D. Novaes, C. A. B. Rodrigues, Averaging theory at any order for computing limit cycles of discontinuous piecewise differential systems with many zones, Physica D Nonlinear Phenomena, 2017, 353–354, 1–10. doi: 10.1016/j.physd.2017.05.003

    CrossRef Google Scholar

    [16] X. Liu, M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, International Journal of Bifurcation and Chaos, 2010, 20(5), 1379–1390. doi: 10.1142/S021812741002654X

    CrossRef Google Scholar

    [17] S. Li, C. Liu, A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system, Journal of Mathematical Analysis and Applications, 2015, 428, 1354–1367. doi: 10.1016/j.jmaa.2015.03.074

    CrossRef Google Scholar

    [18] J. Sanders, F. Vehrulst, Averaging Method in Nonlinear Dynamical Systems, Applied Mathematical Sciences, 59, Springer, Berlin, 1985.

    Google Scholar

    [19] S. Sui, L. Zhao, Bifurcation of Limit Cycles from the Center of a Family of Cubic Polynomial Vector Fields, International Journal of Bifurcation and Chaos, 2018, 28(5), 1850063. doi: 10.1142/S0218127418500633

    CrossRef Google Scholar

    [20] H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, Journal of Differential Equations, 2017, 263(11), 7448–7474. doi: 10.1016/j.jde.2017.08.011

    CrossRef Google Scholar

    [21] Y. Z. Tsypkin, Relay Control Systems, Cambridge University Press, Cambridge, 1984.

    Google Scholar

    [22] Y. Xiong, Limit cycle bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters, Journal of Mathematical Analysis and Applications, 2015, 421, 260–275. doi: 10.1016/j.jmaa.2014.07.013

    CrossRef Google Scholar

    [23] Y. Xiong, M. Han, V G. Romanovski, The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles, International Journal of Bifurcation and Chaos, 2017, 27(8), 1750126. doi: 10.1142/S0218127417501267

    CrossRef Google Scholar

    [24] J. Yang, L. Zhao, Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations, Journal of Differential Equations, 2018, 264, 5734–5757. doi: 10.1016/j.jde.2018.01.017

    CrossRef Google Scholar

Article Metrics

Article views(2726) PDF downloads(867) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint