[1]
|
B. Brogliato, Nonsmooth Impact Mechanics. Models, Dynamics and Control, Springer, London, 1996. doi: 10.1007/BFb0027733
CrossRef Google Scholar
|
[2]
|
R. Benterki, J. Llibre, Periodic solutions of the Duffing differential equation revisited via the averaging theory, Journal of Nonlinear Modeling and Analysis, 2019, 1(2), 167–177.
Google Scholar
|
[3]
|
X. Bo, Y. Tian, Limit cycles for a class of piecewise smooth quadratic differential systems with multiple parameters, International Journal of Bifurcation and Chaos, 2016, 26(10), 1650171. doi: 10.1142/S0218127416501716
CrossRef Google Scholar
|
[4]
|
S. Chen, Stability and perturbations of generalized heteroclinic loops in piecewise smooth systems, Qualitative Theory of Dynamical Systems, 2018, 17, 563–581. doi: 10.1007/s12346-017-0256-x
CrossRef Google Scholar
|
[5]
|
V. Carmona, S. Fernández-García, E. Freire, F. Torres, Melnikov theory for a class of planar hybrid system, Physica D, 2013, 248, 44–54. doi: 10.1016/j.physd.2013.01.002
CrossRef Google Scholar
|
[6]
|
M. Han, Bifurcation Theory of Limit Cycles, Science Press, Beijing, 2013.
Google Scholar
|
[7]
|
M. Han, On the maximum number of periodic solution of piecewise smooth periodic equations by average method, Journal of Applied Analysis and Computation, 2017, 7(2), 788–794.
Google Scholar
|
[8]
|
M. Han, V G. Romanovski, X. Zhang, Equivalence of the Melnikov function method and the averaging method, Qualitative Theory of Dynamical Systems, 2016, 15(2), 471–479. doi: 10.1007/s12346-015-0179-3
CrossRef Google Scholar
|
[9]
|
M. Han, L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, Journal of Applied Analysis and Computation, 2015, 5(4), 809–815.
Google Scholar
|
[10]
|
M. Han, L. Sheng, Xiang Zhang, Bifurcation theory for finitely smooth planar autonomous differential systems, Journal of Differential Equations, 2018, 264, 3596–3618. doi: 10.1016/j.jde.2017.11.025
CrossRef Google Scholar
|
[11]
|
M. Han, Y. Xiong, Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters, Chaos Solitons Fractals, 2014, 68, 20–29. doi: 10.1016/j.chaos.2014.07.005
CrossRef Google Scholar
|
[12]
|
M. Kunze, Piecewise Smooth Dynamical Systems, Springer-Verlag, Berlin, 2000.
Google Scholar
|
[13]
|
F. Liang, M. Han, Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems, Chaos Solitons Fractals, 2012, 45, 454–464. doi: 10.1016/j.chaos.2011.09.013
CrossRef Google Scholar
|
[14]
|
J. Llibre, A. C. Mereu, D. D. Novaes, Averaging theory for discontinuous piecewise differential systems, Journal of Differential Equations, 2015, 258(11), 4007–4032. doi: 10.1016/j.jde.2015.01.022
CrossRef Google Scholar
|
[15]
|
J. Llibre, D. D. Novaes, C. A. B. Rodrigues, Averaging theory at any order for computing limit cycles of discontinuous piecewise differential systems with many zones, Physica D Nonlinear Phenomena, 2017, 353–354, 1–10. doi: 10.1016/j.physd.2017.05.003
CrossRef Google Scholar
|
[16]
|
X. Liu, M. Han, Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, International Journal of Bifurcation and Chaos, 2010, 20(5), 1379–1390. doi: 10.1142/S021812741002654X
CrossRef Google Scholar
|
[17]
|
S. Li, C. Liu, A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system, Journal of Mathematical Analysis and Applications, 2015, 428, 1354–1367. doi: 10.1016/j.jmaa.2015.03.074
CrossRef Google Scholar
|
[18]
|
J. Sanders, F. Vehrulst, Averaging Method in Nonlinear Dynamical Systems, Applied Mathematical Sciences, 59, Springer, Berlin, 1985.
Google Scholar
|
[19]
|
S. Sui, L. Zhao, Bifurcation of Limit Cycles from the Center of a Family of Cubic Polynomial Vector Fields, International Journal of Bifurcation and Chaos, 2018, 28(5), 1850063. doi: 10.1142/S0218127418500633
CrossRef Google Scholar
|
[20]
|
H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, Journal of Differential Equations, 2017, 263(11), 7448–7474. doi: 10.1016/j.jde.2017.08.011
CrossRef Google Scholar
|
[21]
|
Y. Z. Tsypkin, Relay Control Systems, Cambridge University Press, Cambridge, 1984.
Google Scholar
|
[22]
|
Y. Xiong, Limit cycle bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters, Journal of Mathematical Analysis and Applications, 2015, 421, 260–275. doi: 10.1016/j.jmaa.2014.07.013
CrossRef Google Scholar
|
[23]
|
Y. Xiong, M. Han, V G. Romanovski, The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles, International Journal of Bifurcation and Chaos, 2017, 27(8), 1750126. doi: 10.1142/S0218127417501267
CrossRef Google Scholar
|
[24]
|
J. Yang, L. Zhao, Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations, Journal of Differential Equations, 2018, 264, 5734–5757. doi: 10.1016/j.jde.2018.01.017
CrossRef Google Scholar
|