Citation: | Huafeng Xiao, Yuming Chen, Zhiming Guo. NONTRIVIAL PERIODIC SOLUTIONS TO A TYPE OF DELAYED RESONANT DIFFERENTIAL EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2245-2260. doi: 10.11948/20190024 |
[1] | S. Chow and J. Mallet-Paret, The Fuller index and global Hopf bifurcation, J. Differential Equations, 1978, 29(1), 66-85. |
[2] | G. Fei, Multiple periodic solutions of differential delay equations via hamiltonian systems (I), Nonlinear Anal., 2006, 65(1), 25-39. doi: 10.1016/j.na.2005.06.011 |
[3] | G. Fei, Multiple periodic solutions of differential delay equations via hamiltonian systems (Ⅱ), Nonlinear Anal., 2006, 65(1), 40-58. doi: 10.1016/j.na.2005.06.012 |
[4] |
W. Ge and L. Zhang, Multiple periodic solutions of delay differential systems with $2k-1$ lags via variational approach, Discrete Contin. Dyn. Syst., 2016, 36(9), 4925-4943. doi: 10.3934/dcds.2016013
CrossRef $2k-1$ lags via variational approach" target="_blank">Google Scholar |
[5] | Z. Guo and J. Yu, Multiplicity results for periodic solutions to delay differential equations via critical point theory, J. Differential Equations, 2005, 218(1), 15-35. |
[6] | Z. Guo and J. Yu, Multiplicity results on periodic solutions to higher dimensional differential equations with multiple delays, J. Dynam. Differential Equations, 2011, 23(4), 1029-1052. doi: 10.1007/s10884-011-9228-z |
[7] | J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. |
[8] | M. Han, B. Xu and H. Tian, On the number of periodic solutions of delay differential systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 28(4), Article 1850051, 10 pages. |
[9] |
G. Jones, The existence of periodic solutions of $f^{\prime}(x)=-af(x(t-1))[1+f(x)]$, J. Math. Anal. Appl., 1962, 5(3), 435-450. doi: 10.1016/0022-247X(62)90017-3
CrossRef $f^{\prime}(x)=-af(x(t-1))[1+f(x)]$" target="_blank">Google Scholar |
[10] | J. Kaplan and J. Yorke, Ordinary differential equations which yield periodic solution of delay equations, J. Math. Anal. Appl., 1974, 48, 317-324. doi: 10.1016/0022-247X(74)90162-0 |
[11] | J. Li and X. He, Multiple periodic solutions of differential delay equations created by asymptotically linear hamiltonian systems, Nonlinear Anal., 1998, 31(1-2), 45-54. doi: 10.1016/S0362-546X(96)00058-2 |
[12] | J. Li and X. He, Proof and generalization of Kaplan-Yorke's conjecture on periodic solution of differential delay equations, Sci. China Ser.A, 1999, 42(9), 957-964. doi: 10.1007/BF02880387 |
[13] | J. Li, X. He, and Z. Liu, Hamiltonian symmetric groups and multiple periodic solutions of differential delay equations, Nonlinear Anal., 1999, 35(4), 457-474. doi: 10.1016/S0362-546X(97)00623-8 |
[14] | L. Li, H. Sun and W. Ge, Multiple periodic solutions of high order differential delay equations with $2k-1$ lags, Adv. Difference Equ., 2019, 3, 22 pages. |
[15] | L. Li, C. Xue and W. Ge, Periodic orbits to Kaplan-Yorke like differential delay equations with two lags of ratio $(2k-1)/2$, Adv. Difference Equ., 2016, 247, 26 pages. |
[16] | Z. Liu. J. Li and Z. He, Periodic solutions of some differential delay equations created by Hamiltonian systems, Bull. Austral. Math. Soc., 1999, 60, 377-390. doi: 10.1017/S000497270003656X |
[17] | J. Mallet-Paret, Morse decompositions for delay differential equations, J. Differential Equations, 1988, 72(2), 270-315. doi: 10.1016/0022-0396(88)90157-X |
[18] | J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector space, J. Differential Equations, 1972, 12(3), 610-636. doi: 10.1016/0022-0396(72)90028-9 |
[19] | J. Mawhin and M. Willem, Critical points of convex perturbations of some indefinite quadratic forms and semi-linear boundary value problems at resonance, Ann. Inst. H. Poincare Anal. Non Lineaire, 1986, 3(6), 431-453. doi: 10.1016/S0294-1449(16)30376-6 |
[20] | J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci., Springer, 1989. |
[21] | Q. Meng and J. Ding, Periodic solutions for a class of second order delay differential systems, Bound. Value Prob., 2016, 32, 12 pages. |
[22] | R. Nussbaum, Periodic solutions of some nonlinear autonomous functional differential equations, Tran. Amer. Math. Soc., 1978, 238, 139-163. doi: 10.1090/S0002-9947-1978-0482913-0 |
[23] | K. Wu and X. Wu, Multiplicity results of periodic solutions for a class of first order delay differential equations, J. Math. Anal. Appl., 2012, 390(2), 427-438. doi: 10.1016/j.jmaa.2012.02.007 |
[24] | K. Wu, X. Wu and F. Zhou, Multiplicity results of periodic solutions for a class of second order delay differential systems, Nonlinear Anal., 2012, 75(15), 5836-5844. doi: 10.1016/j.na.2012.05.026 |
[25] | K. Wu, X. Wu and F. Zhou, Periodic solutions for a class of second order delay systems, J. Dyn. Control Syst., 2013, 19(3), 421-437. doi: 10.1007/s10883-013-9186-3 |
[26] | J. Yu, A note on periodic solutions of the delay differential equations $x'(t)=-f(x(t-1))$, Proc. Amer. Math. Soc., 2013, 141(4), 1281-1288. |
[27] | J. Yu and Z. Guo, A survey on the periodic solutions to Kaplan-Yorke type delay differential equation-I, Ann. Differential Equations, 2014, 30, 97-114. |
[28] | B. Zheng and Z. Guo, Multiplicity results on periodic solutions to higher-deminsional differential equations with multiple delays, Rocky Mountain J. Math., 2014, 44, 1715-1744. doi: 10.1216/RMJ-2014-44-5-1715 |