2019 Volume 9 Issue 6
Article Contents

Tongqian Zhang, Tong Xu, Junling Wang, Yi Song, Zhichao Jiang. GEOMETRICAL ANALYSIS OF A PEST MANAGEMENT MODEL IN FOOD-LIMITED ENVIRONMENTS WITH NONLINEAR IMPULSIVE STATE FEEDBACK CONTROL[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2261-2277. doi: 10.11948/20190032
Citation: Tongqian Zhang, Tong Xu, Junling Wang, Yi Song, Zhichao Jiang. GEOMETRICAL ANALYSIS OF A PEST MANAGEMENT MODEL IN FOOD-LIMITED ENVIRONMENTS WITH NONLINEAR IMPULSIVE STATE FEEDBACK CONTROL[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2261-2277. doi: 10.11948/20190032

GEOMETRICAL ANALYSIS OF A PEST MANAGEMENT MODEL IN FOOD-LIMITED ENVIRONMENTS WITH NONLINEAR IMPULSIVE STATE FEEDBACK CONTROL

  • Corresponding author: Email address:zhangtongqian@sdust.edu.cn (T. Zhang) 
  • Fund Project: T. Zhang was supported by Shandong Provincial Natural Science Foundation of China (No. ZR2019MA003), SDUST Research Fund (No. 2014TDJH102) and Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents. T. Xu and J. Wang was supported by SDUST Innovation Fund for Graduate Students (No. SDKDYC190119). Z. Jiang was supported by National Natural Science Foundation of China (Nos. 11801014 and 11875001), Natural Science Foundation of Hebei Province (No. A2018409004), Hebei province university discipline top talent selection and training program (SLRC2019020) and Talent Training Project of Hebei Province
  • In this paper, a nonlinear impulsive state feedback control system is proposed to model an integrated pest management in food-limited environments. In the system, impulsive feedback control measures are implemented to control pests on the basis of the quantitative state of pests. Mathematically, an intuitive geometric analysis is used to indicate the existence of periodic solutions. The stability of periodic solutions is investigated by using Analogue of Poincaré Criterion. At last, numerical simulations are given to verify the theoretical analysis.
    MSC: 34C25, 34C60, 92B05
  • 加载中
  • [1] J. L. Apple and R. F. Smith (Eds), Integrated pest management, Springer, Boston, 1976.

    Google Scholar

    [2] D. Atwood and C. Paisley-Jones, Pesticides Industry Sales and Usage 2008-2012 Market Estimates, Tech. rep., U.S. Environmental Protection Agency, Washington, DC., 2017.

    Google Scholar

    [3] D. Auslander, Spatial effects on the stability of a food-limited moth population, J. Franklin Inst., 1982, 314(6), 347-365. doi: 10.1016/0016-0032(82)90021-7

    CrossRef Google Scholar

    [4] J. Chen, T. Zhang, Z. Zhang et al., Stability and output feedback control for singular markovian jump delayed systems, Math. Control Relat. Fields, 2018, 8(2), 475-490. doi: 10.3934/mcrf.2018019

    CrossRef Google Scholar

    [5] L. Chen, X. Liang and Y. Pei, The periodic solutions of the impulsive state feedback dynamical system, Commun. Math. Biol. Neurosci., 2018, 2018, Article ID 14.

    Google Scholar

    [6] M. Chi and W. Zhao, Dynamical analysis of multi-nutrient and single microorganism chemostat model in a polluted environment, Adv. Difference Equ., 2018, 2018(1), 120. doi: 10.1186/s13662-018-1573-3

    CrossRef Google Scholar

    [7] M. Chi and W. Zhao, Dynamical analysis of two-microorganism and single nutrient stochastic chemostat model with monod-haldane response function, Complexity, 2019, 2019, Article ID 8719067, 13 pages.

    Google Scholar

    [8] X. Fan, Y. Song and W. Zhao, Modeling cell-to-cell spread of HIV-1 with nonlocal infections, Complexity, 2018, 2018, Article ID 2139290, 10 pages.

    Google Scholar

    [9] J. Gao, B. Shen, E. Feng and Z. Xiu, Modelling and optimal control for an impulsive dynamical system in microbial fed-batch culture, Comp. Appl. Math., 2013, 32(2), 275-290. doi: 10.1007/s40314-013-0012-z

    CrossRef Google Scholar

    [10] N. Gao, Y. Song, X. Wang and J. Liu, Dynamics of a stochastic sis epidemic model with nonlinear incidence rates, Adv. Difference Equ., 2019, 2019(1), 41.

    Google Scholar

    [11] H. Guo and L. Chen, Periodic solution of a turbidostat system with impulsive state feedback control, J. Math. Chem., 2009, 46(4), 1074-1086.

    Google Scholar

    [12] M. Hernández and A. Margalida, Pesticide abuse in europe: effects on the cinereous vulture (aegypius monachus) population in spain, Ecotoxicology, 2008, 17(4), 264-272. doi: 10.1007/s10646-008-0193-1

    CrossRef Google Scholar

    [13] S. B. Hsu, Ordinary Differential Equations with Applications, World Scientific, Singapore, 1999.

    Google Scholar

    [14] G. Jiang, Q. Lu and L. Qian, Complex dynamics of a holling type Ⅱ prey-predator system with state feedback control, Chaos Solitons Fractals, 2007, 31(2), 448-461.

    Google Scholar

    [15] Z. Jiang, X. Bi, T. Zhang and B. S. A. Pradeep, Global hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient, Math. Biosci. Eng., 2019, 16(5), 3807-3829. doi: 10.3934/mbe.2019188

    CrossRef Google Scholar

    [16] Z. Jiang, W. Zhang, J. Zhang and T. Zhang, Dynamical analysis of a phytoplankton-zooplankton system with harvesting term and holling iii functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2018, 28(13), 1850162. doi: 10.1142/S0218127418501626

    CrossRef Google Scholar

    [17] V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

    Google Scholar

    [18] G. Li and M. Chen, Infinite horizon linear quadratic optimal control for stochastic difference time-delay systems, Adv. Difference Equ., 2015, 2015(1), 14.

    Google Scholar

    [19] Y. Li, H. Cheng and Y. Wang, A lycaon pictus impulsive state feedback control model with allee effect and continuous time delay, Adv. Difference Equ., 2018, 2018(1), 367. doi: 10.1186/s13662-018-1820-7

    CrossRef Google Scholar

    [20] Y. Li, Y. Li, Y. Liu and H. Cheng, Stability analysis and control optimization of a prey-predator model with linear feedback control, Discrete Dyn. Nat. Soc., 2018, 2018, Article ID 4945728, 12 pages.

    Google Scholar

    [21] Z. Li, L. Chen and J. Huang, Permanence and periodicity of a delayed ratio-dependent predator-prey model with holling type functional response and stage structure, J. Comput. Appl. Math., 2009, 233(2), 173-187. doi: 10.1016/j.cam.2009.07.008

    CrossRef Google Scholar

    [22] J. Liang, S. Tang, R. A. Cheke and J. Wu, Adaptive release of natural enemies in a pest-natural enemy system with pesticide resistance, Bull. Math. Biol., 2013, 75(11), 2167-2195. doi: 10.1007/s11538-013-9886-6

    CrossRef Google Scholar

    [23] B. Liu, Y. Zhang and L. Chen, The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management, Nonlinear Anal. Real World Appl., 2005, 6(2), 227-243. doi: 10.1016/j.nonrwa.2004.08.001

    CrossRef Google Scholar

    [24] F. Liu and H. Wu, A note on the endpoint regularity of the discrete maximal operator, Proc. Amer. Math. Soc., 2019, 147(2), 583-596.

    Google Scholar

    [25] G. Liu, Z. Chang and X. Meng, Asymptotic analysis of impulsive dispersal predator-prey systems with markov switching on finite-state space, J. Funct. Spaces, 2019, 2019, Article ID 8057153, 18 pages.

    Google Scholar

    [26] G. Liu, X. Wang, X. Meng and S. Gao, Extinction and persistence in mean of a novel delay impulsive stochastic infected predator-prey system with jumps, Complexity, 2017, 2017, Article ID 1950970, 15 pages.

    Google Scholar

    [27] H. Liu and H. Cheng, Dynamic analysis of a prey-predator model with state-dependent control strategy and square root response function, Adv. Difference Equ., 2018, 2018(1), 63.

    Google Scholar

    [28] K. Liu, T. Zhang and L. Chen, State-dependent pulse vaccination and therapeutic strategy in an SI epidemic model with nonlinear incidence rate, Comput. Math. Methods Med., 2019, 2019, Article ID 3859815, 10 pages.

    Google Scholar

    [29] X. Liu, Y. Li and W. Zhang, Stochastic linear quadratic optimal control with constraint for discrete-time systems, Appl. Math. Comput., 2014, 228, 264-270.

    Google Scholar

    [30] T. Ma, X. Meng and Z. Chang, Dynamics and optimal harvesting control for a stochastic one-predator-two-prey time delay system with jumps, Complexity, 2019, 2019, Article ID 5342031, 19 pages.

    Google Scholar

    [31] X. Meng and L. Zhang, Evolutionary dynamics in a Lotka-Volterra competition model with impulsive periodic disturbance, Math. Methods Appl. Sci., 2016, 39(2), 177-188. doi: 10.1002/mma.3467

    CrossRef Google Scholar

    [32] X. Meng, S. Zhao and W. Zhang, Adaptive dynamics analysis of a predator-prey model with selective disturbance, Appl. Math. Comput., 2015, 266, 946-958.

    Google Scholar

    [33] A. Miao, T. Zhang, J. Zhang and C. Wang, Dynamics of a stochastic SIR model with both horizontal and vertical transmission, J. Appl. Anal. Comput., 2018, 8(4), 1108-1121.

    Google Scholar

    [34] G. Pang and L. Chen, Periodic solution of the system with impulsive state feedback control, Nonlinear Dynam., 2014, 78(1), 743-753.

    Google Scholar

    [35] Z. Shi, J. Wang, Q. Li and H. Cheng, Control optimization and homoclinic bifurcation of a prey-predator model with ratio-dependent, Adv. Difference Equ., 2019, 2019(1), 2. doi: 10.1186/s13662-018-1933-z

    CrossRef Google Scholar

    [36] F. E. Smith, Population dynamics in daphnia magna and a new model for population growth, Ecology, 1963, 44(4), 651-663. doi: 10.2307/1933011

    CrossRef Google Scholar

    [37] R. F. Smith and H. T. Reynolds, Principles, definitions and scope of integrated pest control, in Proceedings of the FAO symposium on Integrated pest control, 1965.

    Google Scholar

    [38] Y. Song, A. Miao, T. Zhang et al., Extinction and persistence of a stochastic SIRS epidemic model with saturated incidence rate and transfer from infectious to susceptible, Adv. Difference Equ., 2018, 2018(1), 293.

    Google Scholar

    [39] K. Sun, T. Zhang and Y. Tian, Dynamics analysis and control optimization of a pest management predator-prey model with an integrated control strategy, Appl. Math. Comput., 2017, 292, 253-271.

    Google Scholar

    [40] S. Tang, Y. Xiao, L. Chen and R. A. Cheke, Integrated pest management models and their dynamical behaviour, Bull. Math. Biol., 2005, 67(1), 115-135. doi: 10.1016/j.bulm.2004.06.005

    CrossRef Google Scholar

    [41] Y. Tian, K. Sun and L. Chen, Modelling and qualitative analysis of a predator-prey system with state-dependent impulsive effects, Math. Comput. Simulation, 2011, 82(2), 318-331. doi: 10.1016/j.matcom.2011.08.003

    CrossRef Google Scholar

    [42] G. Wang and S. Tang, Qualitative analysis of prey-predator model with nonlinear impulsive effects, Appl. Math. Mech.-Engl. Ed., 2013, 34(5), 496-505.

    Google Scholar

    [43] J. Wang, H. Cheng, Y. Li and X. Zhang, The geometrical analysis of a predator-prey model with multi-state dependent impulsive, J. Appl. Anal. Comput., 2018, 8(2), 427-442.

    Google Scholar

    [44] J. Wang, K. Liang, X. Huang et al., Dissipative fault-tolerant control for nonlinear singular perturbed systems with markov jumping parameters based on slow state feedback, Appl. Math. Comput., 2018, 328, 247-262.

    Google Scholar

    [45] M. E. Whalon, D. Mota-Sanchez and R. M. Hollingworth, Global Pesticide Resistance in Arthropods, Commonwealth Agricultural Bureaux International, Cambridge, 2008.

    Google Scholar

    [46] C. Yin, Y. Cheng, S.-M. Zhong and Z. Bai, Fractional-order switching type control law design for adaptive sliding mode technique of 3d fractional-order nonlinear systems, Complexity, 2015, 21(6), 363-373.

    Google Scholar

    [47] S. Yuan, P. Li and Y. Song, Delay induced oscillations in a turbidostat with feedback control, J. Math. Chem., 2011, 49(8), 1646-1666. doi: 10.1007/s10910-011-9848-x

    CrossRef Google Scholar

    [48] J. Zhang, J. Xia, W. Sun et al., Finite-time tracking control for stochastic nonlinear systems with full state constraints, Appl. Math. Comput., 2018, 338, 207-220.

    Google Scholar

    [49] S. Zhang, X. Meng, T. Feng and T. Zhang, Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects, Nonlinear Anal. Hybrid Syst., 2017, 26, 19-37. doi: 10.1016/j.nahs.2017.04.003

    CrossRef Google Scholar

    [50] T. Zhang, X. Liu, X. Meng and T. Zhang, Spatio-temporal dynamics near the steady state of a planktonic system, Comput. Math. Appl., 2018, 75(12), 4490-4504. doi: 10.1016/j.camwa.2018.03.044

    CrossRef Google Scholar

    [51] T. Zhang, W. Ma, X. Meng and T. Zhang, Periodic solution of a prey-predator model with nonlinear state feedback control, Appl. Math. Comput., 2015, 266, 95-107.

    Google Scholar

    [52] T. Zhang, X. Meng, Y. Song and T. Zhang, A stage-structured predator-prey SI model with disease in the prey and impulsive effects, Math. Model. Anal., 2013, 18(4), 505-528. doi: 10.3846/13926292.2013.840866

    CrossRef Google Scholar

    [53] L. Zhao, L. Chen and Q. Zhang, The geometrical analysis of a predator-prey model with two state impulses, Math. Biosci., 2012, 238(2), 55-64. doi: 10.1016/j.mbs.2012.03.011

    CrossRef Google Scholar

    [54] W. Zhao, J. Liu, M. Chi and F. Bian, Dynamics analysis of stochastic epidemic models with standard incidence, Adv. Difference Equ., 2019, 2019(1), 22. doi: 10.1186/s13662-019-1972-0

    CrossRef Google Scholar

    [55] Z. Zhao, T. Wang and L. Chen, Dynamic analysis of a turbidostat model with the feedback control, Commun. Nonlinear Sci. Numer. Simul., 2010, 15(4), 1028-1035. doi: 10.1016/j.cnsns.2009.05.016

    CrossRef Google Scholar

    [56] F. Zhu, X. Meng and T. Zhang, Optimal harvesting of a competitive n-species stochastic model with delayed diffusions, Math. Biosci. Eng., 2019, 16, 1554-1574. doi: 10.3934/mbe.2019074

    CrossRef Google Scholar

    [57] X. Zhuo, Global attractability and permanence for a new stage-structured delay impulsive ecosystem, J. Appl. Anal. Comput., 2018, 8(2), 457-457.

    Google Scholar

    [58] X.-L. Zhuo and F.-X. Zhang, Stability for a new discrete ratio-dependent predator-prey system, Qual. Theory Dyn. Syst., 2018, 17(1), 189-202. doi: 10.1007/s12346-017-0228-1

    CrossRef Google Scholar

Figures(7)  /  Tables(1)

Article Metrics

Article views(2369) PDF downloads(533) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint