2019 Volume 9 Issue 6
Article Contents

Miaomiao Gao, Daqing Jiang, Kai Qi, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad. DYNAMICAL BEHAVIOR OF A STOCHASTIC FOOD CHAIN CHEMOSTAT MODEL WITH MONOD RESPONSE FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2278-2294. doi: 10.11948/20190062
Citation: Miaomiao Gao, Daqing Jiang, Kai Qi, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad. DYNAMICAL BEHAVIOR OF A STOCHASTIC FOOD CHAIN CHEMOSTAT MODEL WITH MONOD RESPONSE FUNCTIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2278-2294. doi: 10.11948/20190062

DYNAMICAL BEHAVIOR OF A STOCHASTIC FOOD CHAIN CHEMOSTAT MODEL WITH MONOD RESPONSE FUNCTIONS

  • This paper studies a food chain chemostat model with Monod response functions, which is perturbed by white noise. Firstly, we prove the existence and uniqueness of the global positive solution. Then sufficient conditions for the existence of a unique ergodic stationary distribution are established by constructing suitable Lyapunov functions. Moreover, we consider the extinction of microbes in two cases. In the first case, both the predator and prey species are extinct. In the second case, only the predator species is extinct, and the prey species survives. Finally, numerical simulations are carried out to illustrate the theoretical results.
    MSC: 60H10, 34F05
  • 加载中
  • [1] E. Ali, M. Asif and A. H. Ajbar, Study of chaotic behavior in predator-prey interactions in a chemostat, Ecol. Model., 2013, 259, 10-15. doi: 10.1016/j.ecolmodel.2013.02.029

    CrossRef Google Scholar

    [2] L. Chen, X. Meng and J. Jiao, Biological Dynamics, Science Press, Beijing, 1993.

    Google Scholar

    [3] M. Chi and W. Zhao, Dynamical analysis of multi-nutrient and single microorganism chemostat model in a polluted environment, Adv. Difference Equations, 2018, 2018, 120. doi: 10.1186/s13662-018-1573-3

    CrossRef Google Scholar

    [4] C. Fritsch, J. Harmand and F. Campillo, A modeling approach of the chemostat, Ecol. Model., 2015, 299, 1-13. doi: 10.1016/j.ecolmodel.2014.11.021

    CrossRef Google Scholar

    [5] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 2001, 43(3), 525-546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [6] L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differential Equations, 2005, 217(1), 26-53.

    Google Scholar

    [7] C. Ji, D. Jiang and N. Shi, Multiple SIR epidemic model with stochastic perturbation, Physica A, 2011, 390, 1747-1762. doi: 10.1016/j.physa.2010.12.042

    CrossRef Google Scholar

    [8] Y. Kuang, Limit cycles in a chemostat-related model, SIAM J. Appl. Math., 1989, 49(6), 1759-1767. doi: 10.1137/0149107

    CrossRef Google Scholar

    [9] R. Khasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands, 1980.

    Google Scholar

    [10] H. Kunita, Itô's stochastic calculus: its surprising power for applications, Stochastic Process. Appl., 2010, 120(5), 622-652. doi: 10.1016/j.spa.2010.01.013

    CrossRef Google Scholar

    [11] B. Li and Y. Kuang, Simple food chain in a chemostat with distinct removal rates, J. Math. Anal. Appl., 2000, 242(1), 75-92.

    Google Scholar

    [12] S. Liu, X. Wang and L. Wang, Competitive exclusion in delayed chemostat models with differential removal rates, SIAM J. Appl. Math., 2014, 74(3), 634-648. doi: 10.1137/130921386

    CrossRef Google Scholar

    [13] H. Liu, X. Li and Q. Yang, The ergodic property and positive recurrence of a multi-group Lotka-Volterra mutualistic system with regime switching, Syst. Control Lett., 2013, 62(10), 805-810. doi: 10.1016/j.sysconle.2013.06.002

    CrossRef Google Scholar

    [14] R. May, Stability and Complexity in Model Ecosystems, Princeton University Press, NJ, 2001.

    Google Scholar

    [15] X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, 1997.

    Google Scholar

    [16] L. Nie, Z. Teng and L. Hu, The dynamics of a chemostat model with state dependent impulsive effects, Internat. J. Bifur. Chaos, 2011, 21(5), 1311-1322. doi: 10.1142/S0218127411029173

    CrossRef Google Scholar

    [17] H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.

    Google Scholar

    [18] T. Sari, Competitive exclusion for chemostat equations with variable yields, Acta Appl. Math., 2013, 123(1), 201-219. doi: 10.1007/s10440-012-9761-8

    CrossRef Google Scholar

    [19] S. Sun, Y. Sun, G. Zhang and X. Liu, Dynamical behavior of a stochastic two-species Monod competition chemostat model, Appl. Math. Comput., 2017, 298, 153-170.

    Google Scholar

    [20] M. Sun, Q. Dong and J. Wu, Asymptotic behavior of a Lotka-Volterra food chain stochastic model in the chemostat, Stoch. Anal. Appl., 2017, 35(4), 645-661. doi: 10.1080/07362994.2017.1299628

    CrossRef Google Scholar

    [21] D. Voulgarelis, A. Velayudhan and F. Smith, Stochastic analysis of a full system of two competing populations in a chemostat, Chem. Eng. Sci., 2018, 175, 424-444. doi: 10.1016/j.ces.2017.10.052

    CrossRef Google Scholar

    [22] L. Wang and D. Jiang, A note on the stationary distribution of the stochastic chemostat model with general response functions, Appl. Math. Lett., 2017, 73, 22-28. doi: 10.1016/j.aml.2017.04.029

    CrossRef Google Scholar

    [23] C. Xu and S. Yuan, An analogue of break-even concentration in a simple stochastic chemostat model, Appl. Math. Lett., 2015, 48, 62-68. doi: 10.1016/j.aml.2015.03.012

    CrossRef Google Scholar

    [24] C. Xu and S. Yuan, Competition in the chemostat: A stochastic multi-species model and its asymptotic behavior, Math. Biosci., 2016, 280, 1-9. doi: 10.1016/j.mbs.2016.07.008

    CrossRef Google Scholar

    [25] C. Xu, S. Yuan and T. Zhang, Sensitivity analysis and feedback control of noise-induced extinction for competition chemostat model with mutualism, Physica A, 2018, 505, 891-902. doi: 10.1016/j.physa.2018.04.040

    CrossRef Google Scholar

    [26] D. Zhao and S. Yuan, Critical result on the break-even concentration in a single-species stochastic chemostat model, J. Math. Anal. Appl., 2016, 434(2), 1336-1345. doi: 10.1016/j.jmaa.2015.09.070

    CrossRef Google Scholar

    [27] D. Zhao and S. Yuan, Sharp conditions for the existence of a stationary distribution in one classical stochastic chemostat, Appl. Math. Comput., 2018, 339, 199-205.

    Google Scholar

    [28] Q. Zhang and D. Jiang, Competitive exclusion in a stochastic chemostat model with Holling type Ⅱ functional response, J. Math. Chem., 2016, 54(3), 777-791. doi: 10.1007/s10910-015-0589-0

    CrossRef Google Scholar

    [29] C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 2007, 46(4), 1155-1179. doi: 10.1137/060649343

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(2572) PDF downloads(674) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint