[1]
|
V. P. Bongolan-Walsh, D. Cheban and J. Duan, Recurrent Motions in the Nonautonomous Navier-Stokes System, Discrete and Continuous Dyn. Sys. B, 2002, 3, 255-262.
Google Scholar
|
[2]
|
T. Caraballo, P. E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stochastics & Dynamics, 2004, 4(3), 405-423.
Google Scholar
|
[3]
|
T. Caraballo, J. Langa, V. Melnik and J. Valero, Pullback Attractors of Nonautonomous and Stochastic Multivalued Dynamical Systems, Set-Valued Analysis, 2003, 11, 153-201. doi: 10.1023/A:1022902802385
CrossRef Google Scholar
|
[4]
|
T. Caraballo, J. Langa and J. Robinson, Upper semicontinuity of attractors for small random perturbations of dynamical systems, Communications in Partial Differential Equations, 1998, 23(9-10), 1557-1581. doi: 10.1080/03605309808821394
CrossRef Google Scholar
|
[5]
|
T. Caraballo, P. Marin-Rubio and J. Valero, Autonomous and non-autonomous attractors for differ- ential equations with delays, J. Differential Equations, 2005, 208, 9-41. doi: 10.1016/j.jde.2003.09.008
CrossRef Google Scholar
|
[6]
|
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Diff. Eq., 1995, 9(2), 307-341.
Google Scholar
|
[7]
|
H. Crauel and F. Flandoli, Attractors for random dynaniical systems, Probability Theory and Related Fields, 1994, 100(3), 365-393. doi: 10.1007/BF01193705
CrossRef Google Scholar
|
[8]
|
P. E. Kloeden and B. Schmalfuss, Asymptotic behaviour of non-autonomous difference inclusions, Systems Control Lett. 1998, 33(4), 275-280. doi: 10.1016/S0167-6911(97)00107-2
CrossRef Google Scholar
|
[9]
|
J. A. Langa and B. Schmalfuss, Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differential equations, Stochastics and Dynamics, 2004, 4(3), 385-404. doi: 10.1142/S0219493704001127
CrossRef Google Scholar
|
[10]
|
D. S. Li and P. E. Kloeden, On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions, J. Differential Equations, 2006, 224(1), 10-38.
Google Scholar
|
[11]
|
D. S. Li, Y. J. Wang and S. Y. Wang, On the dynamics of non-autonomous general dynam- ical systems and differential inclusions, Set-Valued Analysis, 2008, 16(5-6), 651-671. doi: 10.1007/s11228-007-0054-8
CrossRef Google Scholar
|
[12]
|
T. Li, Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows, Commun. Pure Appl. Anal., 2007, 6(1), 279-285.
Google Scholar
|
[13]
|
B. Schmalfuss, Attractors for non-autonomous dynamical systems, in Proc. Equadi 99, Berlin, Eds. B. Fiedler, K. Greger and J. Sprekels (World Scientific, 2000), 684-689.
Google Scholar
|
[14]
|
P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, NewYork, 1982.
Google Scholar
|
[15]
|
B. X. Wang, Upper semicontinuity of random attractors for non-compact random dynamical systems, Electron. J. Differ. Equ., 2009, 139, 1-18.
Google Scholar
|
[16]
|
B. X. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 2014, 14(4), 145009.
Google Scholar
|
[17]
|
J. Y. Wang, Y. J. Wang and D. Zhao, Pullback attractors for multi-valued non-compact random dynamical systems generated by semi-linear degenerate parabolic equations with unbounded delays, Stoch. Dyn., 2016, 16(5), 1750001. doi: 10.1142/S0219493717500010
CrossRef Google Scholar
|
[18]
|
Y. J. Wang, On the upper semicontinuity of pullback attractors for multi-valued processes, Quarterly of Applied Mathematics, 2013, 71(2), 369-399. doi: 10.1090/S0033-569X-2013-01306-1
CrossRef Google Scholar
|
[19]
|
Y. J. Wang, On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems, Discrete and Continuous Dynamical Systems Series B, 2016, 21(10), 3669-3708. doi: 10.3934/dcdsb.2016116
CrossRef Google Scholar
|
[20]
|
Y. J. Wang and J. Y. Wang, Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 2015, 259(2), 728-776. doi: 10.1016/j.jde.2015.02.026
CrossRef Google Scholar
|