[1]
|
R. P. Agarwal, M. Bohner, W. T. Li, Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel Dekker Inc, New York, 2004.
Google Scholar
|
[2]
|
T. Candan, Existence of nonoscillatory solutions for system of higher order nonliear neutral differential equations, Mathematical and Computer Modelling, 2013, 57, 375-381. doi: 10.1016/j.mcm.2012.06.016
CrossRef Google Scholar
|
[3]
|
K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.
Google Scholar
|
[4]
|
L. H. Erbe, Q. K. Kong, B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker Inc, New York, 1995.
Google Scholar
|
[5]
|
I. Györi, G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Presss, Oxford, 1991.
Google Scholar
|
[6]
|
K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic, Boston, 1992.
Google Scholar
|
[7]
|
G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation Theory of Differential Equations with Deviation Arguments, Dekker, New York, 1989.
Google Scholar
|
[8]
|
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, In: North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam, 2006.
Google Scholar
|
[9]
|
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
Google Scholar
|
[10]
|
Y. Zhou, B. Ahmad, A. Alsaedi, Existence of nonoscillatory solutions for fractional functional differential equations, Bulletin of the Malaysian Mathematical Sciences Society, 2017, 2017, 1-16.
Google Scholar
|
[11]
|
Y. Zhou, B. Ahmad, A. Alsaedi, Existence of nonoscillatory solutions for fractional neutral differential equations, Appl. Math. Lett., 2017, 72, 70-74. doi: 10.1016/j.aml.2017.04.016
CrossRef Google Scholar
|
[12]
|
Y. Zhou, L. Peng, On the time-fractional Navier-Stokes equations, Comput. Math. Appl. 2017, 73(6), 874-891. doi: 10.1016/j.camwa.2016.03.026
CrossRef Google Scholar
|
[13]
|
Y. Zhou, L. Peng, Weak solutions of the time-fractional Navier-Stokes equations and optimal control, Comput. Math. Appl., 2017, 73(6), 1016-1027. doi: 10.1016/j.camwa.2016.07.007
CrossRef Google Scholar
|
[14]
|
Y. Zhou, L. Zhang, Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems, Comput. Math. Appl., 2017, 73(6), 1325-1345. doi: 10.1016/j.camwa.2016.04.041
CrossRef Google Scholar
|