[1]
|
Y. Bai, X. Mu, Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptible, J. Appl. Anal. Comput., 2018, 8(2), 402-412.
Google Scholar
|
[2]
|
Y. Chen, Q. Yang, Dynamics of a hyperchaotic Lorenz-type system, Nonlinear Dyn., 2014, 73, 569-581.
Google Scholar
|
[3]
|
E. Freire, A. J. Rodriguez-Luis, E. Gamero, et al., A case study for homoclinic chaos in an autonomous electronic circuit: A trip from Takens-Bogdanov to Hopf-Šil'nikov, Phys. D., 1993, 62, 230-253. doi: 10.1016/0167-2789(93)90284-8
CrossRef Google Scholar
|
[4]
|
P. Glendinning, C. Sparrow, Local and Global Behaviour Near Homoclinic Orbit, J. Stat. Phys., 1984, 35, 645-696. doi: 10.1007/BF01010828
CrossRef Google Scholar
|
[5]
|
J. K. Hale, Ordinary Diferential Equations, Wiley, New York, 1969.
Google Scholar
|
[6]
|
M. Han, B. Xu, H. Tian, Y. Bai, On the Number of Periodic Solutions of Delay Differential Equations, Int. J. Bifurcation and Chaos, 2018, 28(4), 1850051. doi: 10.1142/S0218127418500517
CrossRef Google Scholar
|
[7]
|
M. Han, L. Sheng, X. Zhang, Bifurcation theory for finitely smooth planar autonomous differential systems, J. Differential Equations, 2018, 264, 3596-3618. doi: 10.1016/j.jde.2017.11.025
CrossRef Google Scholar
|
[8]
|
M. Han, L. Zhang, Y. Wang, C. Khalique, The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal.: RWA, 2019, 47, 236-250. doi: 10.1016/j.nonrwa.2018.10.012
CrossRef Google Scholar
|
[9]
|
G. W. Hunt, M. A. Peletier, A. R. Champneys, et al., Cellular buckling in long structures, Nonlinear Dyn., 2000, 21, 3-29. doi: 10.1023/A:1008398006403
CrossRef Google Scholar
|
[10]
|
W. S. Koon, M. W. Lo, J. E. Marsden, S. D. Ross, Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics, Chaos, 2000, 10, 427-469. doi: 10.1063/1.166509
CrossRef Google Scholar
|
[11]
|
Y. A. Kuzenetsov, Elements of Applied Bifurcation Theory, Third ed., Springer-Verlag, New York, 2004.
Google Scholar
|
[12]
|
G. A. Leonov, Fishing principle for homoclinic and heteroclinic trajectories, Nonlinear Dyn., 2014, 78, 2751-2758. doi: 10.1007/s11071-014-1622-8
CrossRef Google Scholar
|
[13]
|
T. Li, J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 1975, 82, 985-992. doi: 10.1080/00029890.1975.11994008
CrossRef Google Scholar
|
[14]
|
T. Li, G. Chen, and G. Chen, On homoclinic and heteroclinic orbits of the Chen's system, Int. J. Bifurcation and Chaos, 2006, 16, 3035-3041. doi: 10.1142/S021812740601663X
CrossRef Google Scholar
|
[15]
|
X. Li, H. Wang, Homoclinic and heteroclinic orbits and bifurcations of a new Lorenz-type system, Int. J. Bifurcation and Chaos, 2011, 21, 2695-2712. doi: 10.1142/S0218127411030039
CrossRef Google Scholar
|
[16]
|
X. Li, Q. Ou, Dynamical properties and simulation of a new Lorenz-like chaotic system, Nonlinear Dyn., 2011, 65, 255-270. doi: 10.1007/s11071-010-9887-z
CrossRef Google Scholar
|
[17]
|
X. Li, P. Wang, Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system, Nonlinear Dyn., 2013, 73, 621-632. doi: 10.1007/s11071-013-0815-x
CrossRef Google Scholar
|
[18]
|
Y. Liu, Q. Yang, Dynamics of a new Lorenz-like chaotic system, Nonl. Anal.: RWA, 2010, 11, 2563-2572. doi: 10.1016/j.nonrwa.2009.09.001
CrossRef Google Scholar
|
[19]
|
Y. Liu, W. Pang, Dynamics of the general Lorenz family, Nonlinear Dyn., 2012, 67, 1595-1611. doi: 10.1007/s11071-011-0090-7
CrossRef Google Scholar
|
[20]
|
X. Liu, Bifurcations near the weak type heterodimensional cycle, Int. J. Bifurcation and Chaos, 2014, 9, 1450112.
Google Scholar
|
[21]
|
X. Liu, Homoclinic Flip Bifurcations Accompanied by Transcritical Bifurcation, Chinese Annals of Mathematics, Series B, 2011, 32(6), 905-916.
Google Scholar
|
[22]
|
X. Liu, X. Fu, D. Zhu, Homoclinic bifurcation with nonhyperbolic equilibria, Nonlinear Anal.: RWA, 2007, 66(12), 2931-2939. doi: 10.1016/j.na.2006.04.014
CrossRef Google Scholar
|
[23]
|
I. M. Ovsyannikov, L. P. Shil'nikov, On systems with a saddle-focus homoclinic curve, Mathematics of the USSR-Sbornik, 1987, 58, 557-574.
Google Scholar
|
[24]
|
L. S. Pontryagin, Ordinary Differential Equations, Addison-Wesley Publishing Company Inc., Reading, 1962, 58.
Google Scholar
|
[25]
|
L. P. Shilnikov, A. L. Shilnikov, D. V.Turaev, L. O. Chua, Methods of qualitative theory in nonlinear dynamics. Part Ⅰ, Ⅱ, World Scientific, Singapore, 2001.
Google Scholar
|
[26]
|
L. P. Shil'nikov, A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type, Mathematics of the USSR-Sbornik, 1970, 10, 91-102. doi: 10.1070/SM1970v010n01ABEH001588
CrossRef Google Scholar
|
[27]
|
A. L. Shil'nikov, L. P.Shil'nikov, D. V.Turaev, Normal forms and Lorenz attractors, Int. J. Bifurcation and Chaos, 1993, 3, 1123-1139. doi: 10.1142/S0218127493000933
CrossRef Google Scholar
|
[28]
|
G. Tigan, D. Turaev, Analytical search for homoclinic bifurcations in the Shimizu-Morioka model, Phys. D., 2011, 240, 985-989. doi: 10.1016/j.physd.2011.02.013
CrossRef Google Scholar
|
[29]
|
G. Tigan, D. Constantinescu, Heteroclinic orbits in the T and the Lü system, Chaos Solitons Fractals, 2009, 42, 20-23. doi: 10.1016/j.chaos.2008.10.024
CrossRef Google Scholar
|
[30]
|
G. Tigan, J. Llibre, Heteroclinic, homoclinic and closed orbits in the Chen system, Int. J. Bifurcation and Chaos, 2016, 26, 1650072(6 pages).
Google Scholar
|
[31]
|
H. Wang, X. Li, More dynamical properties revealed from a 3D Lorenz-like system, Int. J. Bifurcation and Chaos, 2014, 24, 1450133(29 pages).
Google Scholar
|
[32]
|
H. Wang, X. Li, On singular orbits and a given conjecture for a 3D Lorenz-like system, Nonlinear Dyn., 2015, 80, 969-981. doi: 10.1007/s11071-015-1921-8
CrossRef Google Scholar
|
[33]
|
H. Wang, C. Li, X. Li, New heteroclinic orbits coined, Int. J. Bifurcation and Chaos, 2016, 26, 1650194(13 pages).
Google Scholar
|
[34]
|
H. Wang, X. Li, Infinitely many heteroclinic orbits of a complex Lorenz system, Int. J. Bifurcation and Chaos, 2017, 27, 1750110(14 pages).
Google Scholar
|
[35]
|
H. Wang, X. Li, A novel hyperchaotic system with infinitely many heteroclinic orbits coined, Chaos, Solitons and Fractals, 2018, 106, 5-15. doi: 10.1016/j.chaos.2017.10.029
CrossRef Google Scholar
|
[36]
|
S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos, Springer, New York, 2003.
Google Scholar
|
[37]
|
S. Wiggins, Global Bifurcations and Chaos: Analytical Methods, Springer, New York, 1988.
Google Scholar
|
[38]
|
D. Wilczak, P. Zgliczyński, Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem-A Computer Assisted Proof, Commun. Math. Phys., 2003, 234, 37-75. doi: 10.1007/s00220-002-0709-0
CrossRef Google Scholar
|
[39]
|
D. Wilczak, P. Zgliczyński, Heteroclinic connections between periodic orbits in planar restricted circular three body problem. part II, Commun. Math. Phys., 2005, 259, 561-576. doi: 10.1007/s00220-005-1374-x
CrossRef Google Scholar
|
[40]
|
Q. Yang, G. Chen, A chaotic system with one saddle and two stable node-foci, Int. J. Bifurcation and Chaos, 2008, 18, 1393-1414. doi: 10.1142/S0218127408021063
CrossRef Google Scholar
|
[41]
|
Q. Yang, Z. Wei, G. Chen, An unusual 3D autonomous quadratic chaotic system with two stable node-foci. Int. J. Bifurcation and Chaos, 2010, 20, 1061-1083. doi: 10.1142/S0218127410026320
CrossRef Google Scholar
|
[42]
|
Q. Yang, Y. Chen, Complex dynamics in the unified Lorenz-type system, Int. J. Bifurcation and Chaos, 2014, 24, 1450055 (30 pages).
Google Scholar
|
[43]
|
Q. Yang, T. Yang, Complex dynamics in a generalized Langford system, Nonlinear Dyn., 2018, 91(4), 2241-2270.
Google Scholar
|
[44]
|
L. Zhang, Y. Wang, C. Khalique, Y. Bai, Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Compu., 2018, 8(6), 1938-1958.
Google Scholar
|
[45]
|
L. Zhang, C. Khalique, Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete and Continuous Dynamical Systems-Series S, 2018, 11(4), 777-790.
Google Scholar
|