2020 Volume 10 Issue 1
Article Contents

Xianyi Li, Haijun Wang. A THREE-DIMENSIONAL NONLINEAR SYSTEM WITH A SINGLE HETEROCLINIC TRAJECTORY[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 249-266. doi: 10.11948/20190135
Citation: Xianyi Li, Haijun Wang. A THREE-DIMENSIONAL NONLINEAR SYSTEM WITH A SINGLE HETEROCLINIC TRAJECTORY[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 249-266. doi: 10.11948/20190135

A THREE-DIMENSIONAL NONLINEAR SYSTEM WITH A SINGLE HETEROCLINIC TRAJECTORY

  • The study for singular trajectories of three-dimensional (3D) nonlinear systems is one of recent main interests. To the best of our knowledge, among the study for most of Lorenz or Lorenz-like systems, a pair of symmetric heteroclinic trajectories is always found due to the symmetry of those systems. Whether or not does there exist a 3D system that possesses a single heteroclinic trajectory? In the present note, based on a known Lorenz-type system, we introduce such a 3D nonlinear system with two cubic terms and one quadratic term to possess a single heteroclinic trajectory. To show its characters, we respectively use the center manifold theory, bifurcation theory, Lyapunov function and so on, to systematically analyse its complex dynamics, mainly for the distribution of its equilibrium points, the local stability, the expression of locally unstable manifold, the Hopf bifurcation, the invariant algebraic surface, and its homoclinic and heteroclinic trajectories, etc. One of the major results of this work is to rigorously prove that the proposed system has a single heteroclinic trajectory under some certain parameters. This kind of interesting phenomenon has not been previously reported in the Lorenz system family (because the huge amount of related research work always presents a pair of heteroclinic trajectories due to the symmetry of studied systems). What's more key, not like most of Lorenz-type or Lorenz-like systems with singularly degenerate heteroclinic cycles and chaotic attractors, the new proposed system has neither singularly degenerate heteroclinic cycles nor chaotic attractors observed. Thus, this work represents an enriching contribution to the understanding of the dynamics of Lorenz attractor.
    MSC: 34C37, 34D20, 37C29
  • 加载中
  • [1] Y. Bai, X. Mu, Global asymptotic stability of a generalized SIRS epidemic model with transfer from infectious to susceptible, J. Appl. Anal. Comput., 2018, 8(2), 402-412.

    Google Scholar

    [2] Y. Chen, Q. Yang, Dynamics of a hyperchaotic Lorenz-type system, Nonlinear Dyn., 2014, 73, 569-581.

    Google Scholar

    [3] E. Freire, A. J. Rodriguez-Luis, E. Gamero, et al., A case study for homoclinic chaos in an autonomous electronic circuit: A trip from Takens-Bogdanov to Hopf-Šil'nikov, Phys. D., 1993, 62, 230-253. doi: 10.1016/0167-2789(93)90284-8

    CrossRef Google Scholar

    [4] P. Glendinning, C. Sparrow, Local and Global Behaviour Near Homoclinic Orbit, J. Stat. Phys., 1984, 35, 645-696. doi: 10.1007/BF01010828

    CrossRef Google Scholar

    [5] J. K. Hale, Ordinary Diferential Equations, Wiley, New York, 1969.

    Google Scholar

    [6] M. Han, B. Xu, H. Tian, Y. Bai, On the Number of Periodic Solutions of Delay Differential Equations, Int. J. Bifurcation and Chaos, 2018, 28(4), 1850051. doi: 10.1142/S0218127418500517

    CrossRef Google Scholar

    [7] M. Han, L. Sheng, X. Zhang, Bifurcation theory for finitely smooth planar autonomous differential systems, J. Differential Equations, 2018, 264, 3596-3618. doi: 10.1016/j.jde.2017.11.025

    CrossRef Google Scholar

    [8] M. Han, L. Zhang, Y. Wang, C. Khalique, The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations, Nonlinear Anal.: RWA, 2019, 47, 236-250. doi: 10.1016/j.nonrwa.2018.10.012

    CrossRef Google Scholar

    [9] G. W. Hunt, M. A. Peletier, A. R. Champneys, et al., Cellular buckling in long structures, Nonlinear Dyn., 2000, 21, 3-29. doi: 10.1023/A:1008398006403

    CrossRef Google Scholar

    [10] W. S. Koon, M. W. Lo, J. E. Marsden, S. D. Ross, Heteroclinic Connections between Periodic Orbits and Resonance Transitions in Celestial Mechanics, Chaos, 2000, 10, 427-469. doi: 10.1063/1.166509

    CrossRef Google Scholar

    [11] Y. A. Kuzenetsov, Elements of Applied Bifurcation Theory, Third ed., Springer-Verlag, New York, 2004.

    Google Scholar

    [12] G. A. Leonov, Fishing principle for homoclinic and heteroclinic trajectories, Nonlinear Dyn., 2014, 78, 2751-2758. doi: 10.1007/s11071-014-1622-8

    CrossRef Google Scholar

    [13] T. Li, J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 1975, 82, 985-992. doi: 10.1080/00029890.1975.11994008

    CrossRef Google Scholar

    [14] T. Li, G. Chen, and G. Chen, On homoclinic and heteroclinic orbits of the Chen's system, Int. J. Bifurcation and Chaos, 2006, 16, 3035-3041. doi: 10.1142/S021812740601663X

    CrossRef Google Scholar

    [15] X. Li, H. Wang, Homoclinic and heteroclinic orbits and bifurcations of a new Lorenz-type system, Int. J. Bifurcation and Chaos, 2011, 21, 2695-2712. doi: 10.1142/S0218127411030039

    CrossRef Google Scholar

    [16] X. Li, Q. Ou, Dynamical properties and simulation of a new Lorenz-like chaotic system, Nonlinear Dyn., 2011, 65, 255-270. doi: 10.1007/s11071-010-9887-z

    CrossRef Google Scholar

    [17] X. Li, P. Wang, Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system, Nonlinear Dyn., 2013, 73, 621-632. doi: 10.1007/s11071-013-0815-x

    CrossRef Google Scholar

    [18] Y. Liu, Q. Yang, Dynamics of a new Lorenz-like chaotic system, Nonl. Anal.: RWA, 2010, 11, 2563-2572. doi: 10.1016/j.nonrwa.2009.09.001

    CrossRef Google Scholar

    [19] Y. Liu, W. Pang, Dynamics of the general Lorenz family, Nonlinear Dyn., 2012, 67, 1595-1611. doi: 10.1007/s11071-011-0090-7

    CrossRef Google Scholar

    [20] X. Liu, Bifurcations near the weak type heterodimensional cycle, Int. J. Bifurcation and Chaos, 2014, 9, 1450112.

    Google Scholar

    [21] X. Liu, Homoclinic Flip Bifurcations Accompanied by Transcritical Bifurcation, Chinese Annals of Mathematics, Series B, 2011, 32(6), 905-916.

    Google Scholar

    [22] X. Liu, X. Fu, D. Zhu, Homoclinic bifurcation with nonhyperbolic equilibria, Nonlinear Anal.: RWA, 2007, 66(12), 2931-2939. doi: 10.1016/j.na.2006.04.014

    CrossRef Google Scholar

    [23] I. M. Ovsyannikov, L. P. Shil'nikov, On systems with a saddle-focus homoclinic curve, Mathematics of the USSR-Sbornik, 1987, 58, 557-574.

    Google Scholar

    [24] L. S. Pontryagin, Ordinary Differential Equations, Addison-Wesley Publishing Company Inc., Reading, 1962, 58.

    Google Scholar

    [25] L. P. Shilnikov, A. L. Shilnikov, D. V.Turaev, L. O. Chua, Methods of qualitative theory in nonlinear dynamics. Part Ⅰ, Ⅱ, World Scientific, Singapore, 2001.

    Google Scholar

    [26] L. P. Shil'nikov, A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type, Mathematics of the USSR-Sbornik, 1970, 10, 91-102. doi: 10.1070/SM1970v010n01ABEH001588

    CrossRef Google Scholar

    [27] A. L. Shil'nikov, L. P.Shil'nikov, D. V.Turaev, Normal forms and Lorenz attractors, Int. J. Bifurcation and Chaos, 1993, 3, 1123-1139. doi: 10.1142/S0218127493000933

    CrossRef Google Scholar

    [28] G. Tigan, D. Turaev, Analytical search for homoclinic bifurcations in the Shimizu-Morioka model, Phys. D., 2011, 240, 985-989. doi: 10.1016/j.physd.2011.02.013

    CrossRef Google Scholar

    [29] G. Tigan, D. Constantinescu, Heteroclinic orbits in the T and the Lü system, Chaos Solitons Fractals, 2009, 42, 20-23. doi: 10.1016/j.chaos.2008.10.024

    CrossRef Google Scholar

    [30] G. Tigan, J. Llibre, Heteroclinic, homoclinic and closed orbits in the Chen system, Int. J. Bifurcation and Chaos, 2016, 26, 1650072(6 pages).

    Google Scholar

    [31] H. Wang, X. Li, More dynamical properties revealed from a 3D Lorenz-like system, Int. J. Bifurcation and Chaos, 2014, 24, 1450133(29 pages).

    Google Scholar

    [32] H. Wang, X. Li, On singular orbits and a given conjecture for a 3D Lorenz-like system, Nonlinear Dyn., 2015, 80, 969-981. doi: 10.1007/s11071-015-1921-8

    CrossRef Google Scholar

    [33] H. Wang, C. Li, X. Li, New heteroclinic orbits coined, Int. J. Bifurcation and Chaos, 2016, 26, 1650194(13 pages).

    Google Scholar

    [34] H. Wang, X. Li, Infinitely many heteroclinic orbits of a complex Lorenz system, Int. J. Bifurcation and Chaos, 2017, 27, 1750110(14 pages).

    Google Scholar

    [35] H. Wang, X. Li, A novel hyperchaotic system with infinitely many heteroclinic orbits coined, Chaos, Solitons and Fractals, 2018, 106, 5-15. doi: 10.1016/j.chaos.2017.10.029

    CrossRef Google Scholar

    [36] S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos, Springer, New York, 2003.

    Google Scholar

    [37] S. Wiggins, Global Bifurcations and Chaos: Analytical Methods, Springer, New York, 1988.

    Google Scholar

    [38] D. Wilczak, P. Zgliczyński, Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem-A Computer Assisted Proof, Commun. Math. Phys., 2003, 234, 37-75. doi: 10.1007/s00220-002-0709-0

    CrossRef Google Scholar

    [39] D. Wilczak, P. Zgliczyński, Heteroclinic connections between periodic orbits in planar restricted circular three body problem. part II, Commun. Math. Phys., 2005, 259, 561-576. doi: 10.1007/s00220-005-1374-x

    CrossRef Google Scholar

    [40] Q. Yang, G. Chen, A chaotic system with one saddle and two stable node-foci, Int. J. Bifurcation and Chaos, 2008, 18, 1393-1414. doi: 10.1142/S0218127408021063

    CrossRef Google Scholar

    [41] Q. Yang, Z. Wei, G. Chen, An unusual 3D autonomous quadratic chaotic system with two stable node-foci. Int. J. Bifurcation and Chaos, 2010, 20, 1061-1083. doi: 10.1142/S0218127410026320

    CrossRef Google Scholar

    [42] Q. Yang, Y. Chen, Complex dynamics in the unified Lorenz-type system, Int. J. Bifurcation and Chaos, 2014, 24, 1450055 (30 pages).

    Google Scholar

    [43] Q. Yang, T. Yang, Complex dynamics in a generalized Langford system, Nonlinear Dyn., 2018, 91(4), 2241-2270.

    Google Scholar

    [44] L. Zhang, Y. Wang, C. Khalique, Y. Bai, Peakon and cuspon solutions of a generalized Camassa-Holm-Novikov equation, J. Appl. Anal. Compu., 2018, 8(6), 1938-1958.

    Google Scholar

    [45] L. Zhang, C. Khalique, Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs, Discrete and Continuous Dynamical Systems-Series S, 2018, 11(4), 777-790.

    Google Scholar

Figures(8)  /  Tables(1)

Article Metrics

Article views(3498) PDF downloads(599) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint