2020 Volume 10 Issue 1
Article Contents

Haidong Liu. HALF-LINEAR VOLTERRA-FREDHOLM TYPE INTEGRAL INEQUALITIES ON TIME SCALES AND THEIR APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 234-248. doi: 10.11948/20190134
Citation: Haidong Liu. HALF-LINEAR VOLTERRA-FREDHOLM TYPE INTEGRAL INEQUALITIES ON TIME SCALES AND THEIR APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 234-248. doi: 10.11948/20190134

HALF-LINEAR VOLTERRA-FREDHOLM TYPE INTEGRAL INEQUALITIES ON TIME SCALES AND THEIR APPLICATIONS

  • Corresponding author: Email address: tomlhd983@163.com
  • Fund Project: The authors were supported by National Natural Science Foundations of China (Nos. 11671227, 61873144) and National Science Foundation of Shandong Province (No. ZR2018MA018)
  • The main aim of this paper is to establish some new half-linear Volterra-Fredholm type integral inequalities on time scales. Our results not only extend and complement some known integral inequalities but also provide an effective tool for the study of qualitative properties of solutions of some dynamic equations.
    MSC: 26E70, 26D15, 26D10
  • 加载中
  • [1] A. Abdeldaim, A.A. El-Deeb, P. Agarwal and H.A. El-Sennary, On some dynamic inequalities of Steffensen type on time scales, Math. Methods Appl. Sci., 2018, 41(12), 4737-4753. doi: 10.1002/mma.4927

    CrossRef Google Scholar

    [2] M. Adivar and Y.N. Raffoul, Existence results for periodic solutions of integro-dynamic equations on time scales, Ann. Mat. Pura Appl., 2009, 188, 543-559. doi: 10.1007/s10231-008-0088-z

    CrossRef Google Scholar

    [3] R. P. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl., 2001, 4, 535-557.

    Google Scholar

    [4] D. R. Anderson, Nonlinear dynamic integral inequalities in two independent variables on time scale pairs, Adv. Dyn. Syst. Appl., 2008, 3, 1-13.

    Google Scholar

    [5] F. M. Atici, D.C. Biles and A. Lebedinsky, An application of time scales to economics, Math. Comput. Modelling., 2006, 43, 718-726. doi: 10.1016/j.mcm.2005.08.014

    CrossRef Google Scholar

    [6] L. Bi, M. Bohner and M. Fan, Periodic solutions of functional dynamic equations with infinite delay, Nonlinear Anal., 2008, 68, 170-174. doi: 10.1016/j.na.2006.10.039

    CrossRef Google Scholar

    [7] E. A. Bohner, M. Bohner and F. Akin, Pachpatte Inequalities on time scale, J. Inequal. Pure. Appl. Math., 2005, 6(1), Article 6.

    Google Scholar

    [8] M. Bohner and A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser, Boston, 2001.

    Google Scholar

    [9] M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhäuser, Boston, 2003.

    Google Scholar

    [10] D. Cheng, K. I. Kou and Y. H. Xia, A unified analysis of linear quaternion dynamic equations on time scales, J. Appl. Anal. Comput., 2018, 8(1), 172-201.

    Google Scholar

    [11] A. Dogan, On the existence of positive solutions of the p-Laplacian dynamic equations on time scales, Math. Meth. Appl. Sci., 2017, 40, 4385-4399. doi: 10.1002/mma.4311

    CrossRef Google Scholar

    [12] A. Dogan, Positive solutions of the p-Laplacian dynamic equations on time scales with sign changing nonlinearity, Electron. J. Differential Equations., 2018, 39, 1-17.

    Google Scholar

    [13] A. A. El-Deeb and R. G. Ahmed, On some generalizations of certain nonlinear retarded integral inequalities for Volterra-Fredholm integral equations and their applications in delay differential equations, J. Egypt. Math. Soc., 2017, 25(3), 279-285. doi: 10.1016/j.joems.2017.02.001

    CrossRef Google Scholar

    [14] A. A. El-Deeb, H. Y. Xu, A. Abdeldaim and G. T. Wang, Some dynamic inequalities on time scales and their applications, Adv. Differ. Equ., 2019, 2019, 130. doi: 10.1186/s13662-019-2023-6

    CrossRef Google Scholar

    [15] L. Erbe, B. G. Jia and A. Peterson, Belohorec-type oscillation theorem for second order sublinear dynamic equations on time scales, Math. Nachr., 2011, 284, 1658-1668. doi: 10.1002/mana.200810281

    CrossRef Google Scholar

    [16] L. Erbe, B. G. Jia and A. Peterson, On the asymptotic behavior of solutions of Emden-Fowler equations on time scales., Ann. Mat. Pura Appl., 2012, 191, 205-217. doi: 10.1007/s10231-010-0179-5

    CrossRef Google Scholar

    [17] M. Federson, J. G. Mesquita, and A. Slavik, Measure functional differential equations and functional dynamic equations on time scales, J. Diff. Equations., 2012, 252, 3816-3847. doi: 10.1016/j.jde.2011.11.005

    CrossRef Google Scholar

    [18] Q. H. Feng, F. W. Meng and B. Zheng, Gronwall-Bellman type nonlinear delay integral inequalities on time scale, J. Math. Anal. Appl., 2011, 382, 772-784. doi: 10.1016/j.jmaa.2011.04.077

    CrossRef Google Scholar

    [19] Q. H. Feng and F. W. Meng, Oscillation results for a fractional order dynamic equation on time scales with conformable fractional derivative, Adv. Differ. Equ., 2018, 2018, 193. doi: 10.1186/s13662-018-1643-6

    CrossRef Google Scholar

    [20] J. Gu and F. W. Meng, Some new nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales, Appl. Math. Comput., 2014, 245, 235-242.

    Google Scholar

    [21] S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten, PhD thesis, Universität Würzburg, 1988.

    Google Scholar

    [22] B. Karpuz, Volterra Theory on Time Scales, Results. Math., 2014, 65, 263-292. doi: 10.1007/s00025-013-0344-4

    CrossRef Google Scholar

    [23] W. N. Li and W. H. Sheng, Some Gronwall type inequalities on time scales, J. Math. Inequal., 2010, 4(1), 67-76.

    Google Scholar

    [24] H. D. Liu, C. Y. Li and F. C. Shen, A class of new nonlinear dynamic integral inequalities containing integration on infinite interval on time scales, Adv. Differ. Equ., 2019, 2019, 311. doi: 10.1186/s13662-019-2236-8

    CrossRef Google Scholar

    [25] H. D. Liu, Some New Half-Linear Integral Inequalities on Time Scales and Applications, Discrete. Dyn. Nat. Soc., 2019, 2019, Article ID 9860302.

    Google Scholar

    [26] H. D. Liu, A class of retarded Volterra-Fredholm type integral inequalities on time scales and their applications., J. Inequal. Appl., 2017, 2017, 293. doi: 10.1186/s13660-017-1573-y

    CrossRef Google Scholar

    [27] H. D. Liu, Lyapunov-type inequalities for certain higher-order difference equations with mixed non-linearities., Adv. Differ. Equ., 2018, 2018, 229. doi: 10.1186/s13662-018-1688-6

    CrossRef Google Scholar

    [28] H. D. Liu, Some new integral inequalities with mixed nonlinearities for discontinuous functions, Adv. Differ. Equ., 2018, 2018, 22. doi: 10.1186/s13662-017-1450-5

    CrossRef Google Scholar

    [29] H. D. Liu, On some nonlinear retarded Volterra-Fredholm type integral inequalities on time scales and their applications, J. Inequal. Appl., 2018, 2018, 211. doi: 10.1186/s13660-018-1808-6

    CrossRef Google Scholar

    [30] H. D. Liu, An improvement of the Lyapunov inequality for certain higher order differential equations, J. Inequal. Appl., 2018, 2018, 215. doi: 10.1186/s13660-018-1809-5

    CrossRef Google Scholar

    [31] H. D. Liu and F. W. Meng, Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs, J. Inequal. Appl., 2015, 2015, 209. doi: 10.1186/s13660-015-0726-0

    CrossRef Google Scholar

    [32] H. D. Liu and C. Q. Ma, Oscillation Criteria of Even Order Delay Dynamic Equations with Nonlinearities Given by Riemann-Stieltjes Integrals, Abstr. Appl. Anal., 2014, 2014, Article ID 395381.

    Google Scholar

    [33] H. D. Liu and F. W. Meng, Existence of positive periodic solutions for a predator-prey system of Holling type Ⅳ function response with mutual interference and impulsive effects, Discrete. Dyn. Nat. Soc., 2015, 2015, 138984.

    Google Scholar

    [34] H. D. Liu and F. W. Meng, Some new generalized Volterra-Fredholm type discrete fractional sum inequalities and their applications, J. Inequal. Appl., 2016, 2016, 213. doi: 10.1186/s13660-016-1152-7

    CrossRef Google Scholar

    [35] H. D. Liu and F. W. Meng, Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent, Adv. Differ. Equ., 2016, 2016, 291. doi: 10.1186/s13662-016-0983-3

    CrossRef Google Scholar

    [36] H. D. Liu and F. W. Meng, Nonlinear retarded integral inequalities on time scales and their applications, J. Math. Inequal., 2018, 12 (1), 219-234.

    Google Scholar

    [37] F. W. Meng and J. Shao, Some new Volterra-Fredholm type dynamic integral inequalities on time scales, Appl. Math. Comput., 2013, 223, 444-451.

    Google Scholar

    [38] A. Slavik, Averaging dynamic equations on time scales, J. Math. Anal. Appl., 2012, 388, 996-1012. doi: 10.1016/j.jmaa.2011.10.043

    CrossRef Google Scholar

    [39] S. H. Saker, Some nonlinear dynamic inequalities on time scales, Math. Inequal. Appl., 2011, 14, 633-645.

    Google Scholar

    [40] S. H. Saker, A. A. El-Deeb, H. M. Rezk and R. P. Agarwal, On Hilbert's inequality on time scales, Appl. Anal. Discrete. Math., 2017, 11(2), 399-423. doi: 10.2298/AADM170428001S

    CrossRef Google Scholar

    [41] S. H. Saker and I. Kubiaczyk, Reverse dynamic inequalities and higher integrability theorems, J. Math.Anal.Appl., 2019, 471, 671-686. doi: 10.1016/j.jmaa.2018.10.098

    CrossRef Google Scholar

    [42] Y. Sui and Z. L. Han, Oscillation of second order nonlinear dynamic equations with a nonlinear neutral term on time scales, J. Appl. Anal. Comput., 2018, 8(6), 1811-1820.

    Google Scholar

    [43] Y. G. Sun and T. S. Hassan, Some nonlinear dynamic integral inequalities on time scales, Appl. Math. Comput., 2013, 220, 221-225.

    Google Scholar

    [44] Y. Z. Tian, A. A. El-Deeb and F. W. Meng, Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales, Discrete. Dyn. Nat. Soc., 2018, Article ID 5841985.

    Google Scholar

    [45] E. Tunç and H. D. Liu, Oscillatory behavior for second-order damped differential equation with nonlinearities including Riemann-Stieltjes integrals, Electron. J. Differential Equations., 2018, 2018, 54.

    Google Scholar

    [46] J. F. Wang, F. W. Meng and J. Gu, Estimates on some power nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales, Adv. Differ. Equ., 2017, 2017, 257. doi: 10.1186/s13662-017-1310-3

    CrossRef Google Scholar

    [47] Y. Xia, H. Wang, K. Kou and Z. Hu, Periodic solution of a higher dimensional ecological system with feedback control, J. Appl. Anal. Comput., 2016, 6(3), 893-906.

    Google Scholar

    [48] D. L. Zhao, S. L. Yuan and H. D. Liu, Stochastic Dynamics of the delayed chemostat with Lévy noises, Int. J. Biomath., 2019, 12(5), Article ID 1950056.

    Google Scholar

    [49] D. L. Zhao, Study on the threshold of a stochastic SIR epidemic model and its extensions, Commun. Nonlinear Sci. Numer. Simul., 2016, 38, 172-177. doi: 10.1016/j.cnsns.2016.02.014

    CrossRef Google Scholar

    [50] D. L. Zhao and H.D. Liu, Coexistence in a two species chemostat model with Markov switchings, Appl. Math. Lett., 2019, 94, 266-271. doi: 10.1016/j.aml.2019.03.005

    CrossRef Google Scholar

    [51] D. L. Zhao, S. L. Yuan and H. D. Liu, Random periodic solution for a stochastic SIS epidemic model with constant population size, Adv. Differ. Equ., 2018, 2018, 64. doi: 10.1186/s13662-018-1511-4

    CrossRef Google Scholar

    [52] B. Zhang, J. S. Zhuang, H. D. Liu, J. D. Cao, and Y. H. Xia, Master-slave synchronization of a class of fractional-order Takagi-Sugeno fuzzy neural networks, Adv. Differ. Equ., 2018, 2018, 473. doi: 10.1186/s13662-018-1918-y

    CrossRef Google Scholar

Article Metrics

Article views(2987) PDF downloads(547) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint