[1]
|
A. Abdeldaim, A.A. El-Deeb, P. Agarwal and H.A. El-Sennary, On some dynamic inequalities of Steffensen type on time scales, Math. Methods Appl. Sci., 2018, 41(12), 4737-4753. doi: 10.1002/mma.4927
CrossRef Google Scholar
|
[2]
|
M. Adivar and Y.N. Raffoul, Existence results for periodic solutions of integro-dynamic equations on time scales, Ann. Mat. Pura Appl., 2009, 188, 543-559. doi: 10.1007/s10231-008-0088-z
CrossRef Google Scholar
|
[3]
|
R. P. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl., 2001, 4, 535-557.
Google Scholar
|
[4]
|
D. R. Anderson, Nonlinear dynamic integral inequalities in two independent variables on time scale pairs, Adv. Dyn. Syst. Appl., 2008, 3, 1-13.
Google Scholar
|
[5]
|
F. M. Atici, D.C. Biles and A. Lebedinsky, An application of time scales to economics, Math. Comput. Modelling., 2006, 43, 718-726. doi: 10.1016/j.mcm.2005.08.014
CrossRef Google Scholar
|
[6]
|
L. Bi, M. Bohner and M. Fan, Periodic solutions of functional dynamic equations with infinite delay, Nonlinear Anal., 2008, 68, 170-174. doi: 10.1016/j.na.2006.10.039
CrossRef Google Scholar
|
[7]
|
E. A. Bohner, M. Bohner and F. Akin, Pachpatte Inequalities on time scale, J. Inequal. Pure. Appl. Math., 2005, 6(1), Article 6.
Google Scholar
|
[8]
|
M. Bohner and A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser, Boston, 2001.
Google Scholar
|
[9]
|
M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhäuser, Boston, 2003.
Google Scholar
|
[10]
|
D. Cheng, K. I. Kou and Y. H. Xia, A unified analysis of linear quaternion dynamic equations on time scales, J. Appl. Anal. Comput., 2018, 8(1), 172-201.
Google Scholar
|
[11]
|
A. Dogan, On the existence of positive solutions of the p-Laplacian dynamic equations on time scales, Math. Meth. Appl. Sci., 2017, 40, 4385-4399. doi: 10.1002/mma.4311
CrossRef Google Scholar
|
[12]
|
A. Dogan, Positive solutions of the p-Laplacian dynamic equations on time scales with sign changing nonlinearity, Electron. J. Differential Equations., 2018, 39, 1-17.
Google Scholar
|
[13]
|
A. A. El-Deeb and R. G. Ahmed, On some generalizations of certain nonlinear retarded integral inequalities for Volterra-Fredholm integral equations and their applications in delay differential equations, J. Egypt. Math. Soc., 2017, 25(3), 279-285. doi: 10.1016/j.joems.2017.02.001
CrossRef Google Scholar
|
[14]
|
A. A. El-Deeb, H. Y. Xu, A. Abdeldaim and G. T. Wang, Some dynamic inequalities on time scales and their applications, Adv. Differ. Equ., 2019, 2019, 130. doi: 10.1186/s13662-019-2023-6
CrossRef Google Scholar
|
[15]
|
L. Erbe, B. G. Jia and A. Peterson, Belohorec-type oscillation theorem for second order sublinear dynamic equations on time scales, Math. Nachr., 2011, 284, 1658-1668. doi: 10.1002/mana.200810281
CrossRef Google Scholar
|
[16]
|
L. Erbe, B. G. Jia and A. Peterson, On the asymptotic behavior of solutions of Emden-Fowler equations on time scales., Ann. Mat. Pura Appl., 2012, 191, 205-217. doi: 10.1007/s10231-010-0179-5
CrossRef Google Scholar
|
[17]
|
M. Federson, J. G. Mesquita, and A. Slavik, Measure functional differential equations and functional dynamic equations on time scales, J. Diff. Equations., 2012, 252, 3816-3847. doi: 10.1016/j.jde.2011.11.005
CrossRef Google Scholar
|
[18]
|
Q. H. Feng, F. W. Meng and B. Zheng, Gronwall-Bellman type nonlinear delay integral inequalities on time scale, J. Math. Anal. Appl., 2011, 382, 772-784. doi: 10.1016/j.jmaa.2011.04.077
CrossRef Google Scholar
|
[19]
|
Q. H. Feng and F. W. Meng, Oscillation results for a fractional order dynamic equation on time scales with conformable fractional derivative, Adv. Differ. Equ., 2018, 2018, 193. doi: 10.1186/s13662-018-1643-6
CrossRef Google Scholar
|
[20]
|
J. Gu and F. W. Meng, Some new nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales, Appl. Math. Comput., 2014, 245, 235-242.
Google Scholar
|
[21]
|
S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten, PhD thesis, Universität Würzburg, 1988.
Google Scholar
|
[22]
|
B. Karpuz, Volterra Theory on Time Scales, Results. Math., 2014, 65, 263-292. doi: 10.1007/s00025-013-0344-4
CrossRef Google Scholar
|
[23]
|
W. N. Li and W. H. Sheng, Some Gronwall type inequalities on time scales, J. Math. Inequal., 2010, 4(1), 67-76.
Google Scholar
|
[24]
|
H. D. Liu, C. Y. Li and F. C. Shen, A class of new nonlinear dynamic integral inequalities containing integration on infinite interval on time scales, Adv. Differ. Equ., 2019, 2019, 311. doi: 10.1186/s13662-019-2236-8
CrossRef Google Scholar
|
[25]
|
H. D. Liu, Some New Half-Linear Integral Inequalities on Time Scales and Applications, Discrete. Dyn. Nat. Soc., 2019, 2019, Article ID 9860302.
Google Scholar
|
[26]
|
H. D. Liu, A class of retarded Volterra-Fredholm type integral inequalities on time scales and their applications., J. Inequal. Appl., 2017, 2017, 293. doi: 10.1186/s13660-017-1573-y
CrossRef Google Scholar
|
[27]
|
H. D. Liu, Lyapunov-type inequalities for certain higher-order difference equations with mixed non-linearities., Adv. Differ. Equ., 2018, 2018, 229. doi: 10.1186/s13662-018-1688-6
CrossRef Google Scholar
|
[28]
|
H. D. Liu, Some new integral inequalities with mixed nonlinearities for discontinuous functions, Adv. Differ. Equ., 2018, 2018, 22. doi: 10.1186/s13662-017-1450-5
CrossRef Google Scholar
|
[29]
|
H. D. Liu, On some nonlinear retarded Volterra-Fredholm type integral inequalities on time scales and their applications, J. Inequal. Appl., 2018, 2018, 211. doi: 10.1186/s13660-018-1808-6
CrossRef Google Scholar
|
[30]
|
H. D. Liu, An improvement of the Lyapunov inequality for certain higher order differential equations, J. Inequal. Appl., 2018, 2018, 215. doi: 10.1186/s13660-018-1809-5
CrossRef Google Scholar
|
[31]
|
H. D. Liu and F. W. Meng, Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs, J. Inequal. Appl., 2015, 2015, 209. doi: 10.1186/s13660-015-0726-0
CrossRef Google Scholar
|
[32]
|
H. D. Liu and C. Q. Ma, Oscillation Criteria of Even Order Delay Dynamic Equations with Nonlinearities Given by Riemann-Stieltjes Integrals, Abstr. Appl. Anal., 2014, 2014, Article ID 395381.
Google Scholar
|
[33]
|
H. D. Liu and F. W. Meng, Existence of positive periodic solutions for a predator-prey system of Holling type Ⅳ function response with mutual interference and impulsive effects, Discrete. Dyn. Nat. Soc., 2015, 2015, 138984.
Google Scholar
|
[34]
|
H. D. Liu and F. W. Meng, Some new generalized Volterra-Fredholm type discrete fractional sum inequalities and their applications, J. Inequal. Appl., 2016, 2016, 213. doi: 10.1186/s13660-016-1152-7
CrossRef Google Scholar
|
[35]
|
H. D. Liu and F. W. Meng, Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent, Adv. Differ. Equ., 2016, 2016, 291. doi: 10.1186/s13662-016-0983-3
CrossRef Google Scholar
|
[36]
|
H. D. Liu and F. W. Meng, Nonlinear retarded integral inequalities on time scales and their applications, J. Math. Inequal., 2018, 12 (1), 219-234.
Google Scholar
|
[37]
|
F. W. Meng and J. Shao, Some new Volterra-Fredholm type dynamic integral inequalities on time scales, Appl. Math. Comput., 2013, 223, 444-451.
Google Scholar
|
[38]
|
A. Slavik, Averaging dynamic equations on time scales, J. Math. Anal. Appl., 2012, 388, 996-1012. doi: 10.1016/j.jmaa.2011.10.043
CrossRef Google Scholar
|
[39]
|
S. H. Saker, Some nonlinear dynamic inequalities on time scales, Math. Inequal. Appl., 2011, 14, 633-645.
Google Scholar
|
[40]
|
S. H. Saker, A. A. El-Deeb, H. M. Rezk and R. P. Agarwal, On Hilbert's inequality on time scales, Appl. Anal. Discrete. Math., 2017, 11(2), 399-423. doi: 10.2298/AADM170428001S
CrossRef Google Scholar
|
[41]
|
S. H. Saker and I. Kubiaczyk, Reverse dynamic inequalities and higher integrability theorems, J. Math.Anal.Appl., 2019, 471, 671-686. doi: 10.1016/j.jmaa.2018.10.098
CrossRef Google Scholar
|
[42]
|
Y. Sui and Z. L. Han, Oscillation of second order nonlinear dynamic equations with a nonlinear neutral term on time scales, J. Appl. Anal. Comput., 2018, 8(6), 1811-1820.
Google Scholar
|
[43]
|
Y. G. Sun and T. S. Hassan, Some nonlinear dynamic integral inequalities on time scales, Appl. Math. Comput., 2013, 220, 221-225.
Google Scholar
|
[44]
|
Y. Z. Tian, A. A. El-Deeb and F. W. Meng, Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time scales, Discrete. Dyn. Nat. Soc., 2018, Article ID 5841985.
Google Scholar
|
[45]
|
E. Tunç and H. D. Liu, Oscillatory behavior for second-order damped differential equation with nonlinearities including Riemann-Stieltjes integrals, Electron. J. Differential Equations., 2018, 2018, 54.
Google Scholar
|
[46]
|
J. F. Wang, F. W. Meng and J. Gu, Estimates on some power nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales, Adv. Differ. Equ., 2017, 2017, 257. doi: 10.1186/s13662-017-1310-3
CrossRef Google Scholar
|
[47]
|
Y. Xia, H. Wang, K. Kou and Z. Hu, Periodic solution of a higher dimensional ecological system with feedback control, J. Appl. Anal. Comput., 2016, 6(3), 893-906.
Google Scholar
|
[48]
|
D. L. Zhao, S. L. Yuan and H. D. Liu, Stochastic Dynamics of the delayed chemostat with Lévy noises, Int. J. Biomath., 2019, 12(5), Article ID 1950056.
Google Scholar
|
[49]
|
D. L. Zhao, Study on the threshold of a stochastic SIR epidemic model and its extensions, Commun. Nonlinear Sci. Numer. Simul., 2016, 38, 172-177. doi: 10.1016/j.cnsns.2016.02.014
CrossRef Google Scholar
|
[50]
|
D. L. Zhao and H.D. Liu, Coexistence in a two species chemostat model with Markov switchings, Appl. Math. Lett., 2019, 94, 266-271. doi: 10.1016/j.aml.2019.03.005
CrossRef Google Scholar
|
[51]
|
D. L. Zhao, S. L. Yuan and H. D. Liu, Random periodic solution for a stochastic SIS epidemic model with constant population size, Adv. Differ. Equ., 2018, 2018, 64. doi: 10.1186/s13662-018-1511-4
CrossRef Google Scholar
|
[52]
|
B. Zhang, J. S. Zhuang, H. D. Liu, J. D. Cao, and Y. H. Xia, Master-slave synchronization of a class of fractional-order Takagi-Sugeno fuzzy neural networks, Adv. Differ. Equ., 2018, 2018, 473. doi: 10.1186/s13662-018-1918-y
CrossRef Google Scholar
|