[1]
|
H. A. Armando, M. P. Romo, M. T. Roberto, Response spectra generation using a fractional differential model, Soil Dynamics and Earthquake Engineering, 2018, 115, 719-729. doi: 10.1016/j.soildyn.2018.09.006
CrossRef Google Scholar
|
[2]
|
I. Bihari, Researches of the boundedness and stability of the solutions of non-linear differential equations, Acta Mathematica Hungarica, 1957, 8(3), 261-278.
Google Scholar
|
[3]
|
M. Benchohra, S. Hamani, Y. Zhou, Oscillation and nonoscillation for Caputo-Hadamard impulsive fractional differential inclusions, Advances in Difference Equations, 2019, 74, 1-15.
Google Scholar
|
[4]
|
L. Feng, S. Sun, Oscillation theorems for three class of conformable fractional differential equations, Advances in Difference Equations, 2019, 2019(313), 1-30.
Google Scholar
|
[5]
|
S. R. Grace, On the oscillatory behavior of solutions of nonlinear fractional differential equations, Applied Mathematics and Computation, 2015, 266, 259-266. doi: 10.1016/j.amc.2015.05.062
CrossRef Google Scholar
|
[6]
|
T. Guo, Controllability and observability of impulsive fractional linear time-invariant system, Computers and Mathematics with Applications, 2012, 64(10), 3171-3182. doi: 10.1016/j.camwa.2012.02.020
CrossRef Google Scholar
|
[7]
|
Y. Jiang, B. Xia, X. Zhao et al., Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery, Energy, 2017, 135, 171-181. doi: 10.1016/j.energy.2017.06.109
CrossRef Google Scholar
|
[8]
|
Q. Ma, J. Pecaric, J. Zhang, Integral inequalities of systems and the estimate for solutions of certain nonlinear two-dimensional fractional differential systems, Computers and Mathematics with Applications, 2011, 61, 3258-3267. doi: 10.1016/j.camwa.2011.04.008
CrossRef Google Scholar
|
[9]
|
A. Ortega, J. J. Rosales, J. M. Cruz-Duarte et al., Fractional model of the dielectric dispersion, Optik-International Journal for Light and Electron Optics, 2019, 180, 754-759. doi: 10.1016/j.ijleo.2018.11.087
CrossRef Google Scholar
|
[10]
|
A. Raheem, M. Maqbul, Oscillation criteria for impulsive partial fractional differential equations, Computers and Mathematics with Applications, 2017, 73, 1781-1788. doi: 10.1016/j.camwa.2017.02.016
CrossRef Google Scholar
|
[11]
|
I. Stamova, Global stability of impulsive fractional differential equations, Applied Mathematics and Computation, 2014, 237, 605-612. doi: 10.1016/j.amc.2014.03.067
CrossRef Google Scholar
|
[12]
|
J. Tariboon, S. K. Ntouyas, Oscillation of impulsive conformable fractional differential equations, Open Mathematics, 2016, 14, 497-508.
Google Scholar
|
[13]
|
J. Wang, X. Li, W. Wei, On the natural solution of an impulsive fractional differential equation of order $q\in(1, 2)$, Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 4384-4394. doi: 10.1016/j.cnsns.2012.03.011
CrossRef $q\in(1, 2)$" target="_blank">Google Scholar
|
[14]
|
Y. Wang, Z. Han, S. Sun, Comment on "On the oscillation of fractional-order delay differential equations with constant coefficients"[Commun. Nonlinear. Sci. Volume 19, Issue 11, November 2014, Pages 3988-3993], Communications in Nonlinear Science and Numerical Simulation, 2015, 26, 195-200. doi: 10.1016/j.cnsns.2014.12.017
CrossRef Google Scholar
|
[15]
|
Y. Wang, Z. Han, P. Zhao et al., Oscillation theorems for fractional neutral differential equations, Hacettepe Journal of Mathematics and Statistics, 2015, 44(6), 1477-1488.
Google Scholar
|
[16]
|
L. Xu, J. Li, S. Ge, Impulsive stabilization of fractional differential systems, ISA Transactions, 2017, 70, 12-131.
Google Scholar
|
[17]
|
Y. Zhou, B. Ahmad, A. Alsaedi, Existence of nonoscillatory solutions for fractional neutral differential equations, Applied Mathematics Letters, 2017, 72, 70-74. doi: 10.1016/j.aml.2017.04.016
CrossRef Google Scholar
|
[18]
|
Y. Zhou, B. Ahmad, F. Chen et al., Oscillation for fractional partial differential equations, Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(2), 449-465. doi: 10.1007/s40840-017-0495-7
CrossRef Google Scholar
|
[19]
|
Y. Zhou, B. Ahmad, A. Alsaedi, Existence of nonoscillatory solutions for fractional functional differential equations, Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(2), 751-766. doi: 10.1007/s40840-017-0511-y
CrossRef Google Scholar
|