2020 Volume 10 Issue 1
Article Contents

Weihong Mao. BIFURCATIONS AND EXACT TRAVELLING WAVE SOLUTIONS OF M-N-WANG EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 210-222. doi: 10.11948/20190113
Citation: Weihong Mao. BIFURCATIONS AND EXACT TRAVELLING WAVE SOLUTIONS OF M-N-WANG EQUATION[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 210-222. doi: 10.11948/20190113

BIFURCATIONS AND EXACT TRAVELLING WAVE SOLUTIONS OF M-N-WANG EQUATION

  • By using the method of dynamical systems to Mikhailov-Novikov-Wang Equation, through qualitative analysis, we obtain bifurcations of phase portraits of the traveling system of the derivative $\phi(\xi)$ of the wave function $\psi(\xi)$. Under different parameter conditions, for $\phi(\xi)$, exact explicit solitary wave solutions, periodic peakon and anti-peakon solutions are obtained. By integrating known $\phi(\xi)$, nine exact explicit traveling wave solutions of $\psi(\xi)$ are given.
    MSC: 34C23, 34C37, 34A05
  • 加载中
  • [1] M. Antonowicz and A. P. Fordy, Coupled KDV equation with multi-Hamiltonian structures, Physica D, 1987, 28(3), 345-357. doi: 10.1016/0167-2789(87)90023-6

    CrossRef Google Scholar

    [2] M. Antonowicz and A. P. Fordy, Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems, Commun. Math. Phys, 1989, 124(3), 465-486.

    Google Scholar

    [3] P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists, Springer, Berlin, 1971.

    Google Scholar

    [4] A. N. W. Hone, V. Novikov and C. Verhoeven, An integrable hierarchy with a perturbed H'enon-Heiles system, Inverse Problems, 2006, 22, 2001-2020. doi: 10.1088/0266-5611/22/6/006

    CrossRef Google Scholar

    [5] A. N. W. Hone, V. Novikov and C. Verhoeven, An extended Hónon-Heiles system, Physics Letters A, 2008, 372, 1440-1444. doi: 10.1016/j.physleta.2007.09.063

    CrossRef Google Scholar

    [6] J. Li, Singular nonlinear travelling wave equations: bifurcations and exact solutions, Science Press, Beijing, 2013.

    Google Scholar

    [7] J. Li, W. Zhu and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Int. J. Bifurcation and Chaos, 2016, 26(12), 1650207. doi: 10.1142/S0218127416502072

    CrossRef Google Scholar

    [8] J. Li, Notes on exact traveling wave solutions for a long wave-short wave model, Journal of Applied Analysis and Computation, 2015, 5(1), 138-140.

    Google Scholar

    [9] J. Liang and J. Li, Bifurcations and exact solutions of nonlinear Schr$\ddot{o}$dinger equation with an anti-cubic nonlinearity, Journal of Applied Analysis and Computation, 2018, 8(4), 1194-1210.

    Google Scholar

    [10] J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Int. J. Bifurcation and Chaos, 2007, 17(11), 4049-4065. doi: 10.1142/S0218127407019858

    CrossRef Google Scholar

    [11] J. Li, J. Wu and H. Zhu, Travelling waves for an integrable higher order KdV type wave equations, Int. J. Bifurcation and Chaos, 2006, 16(8), 2235-2260. doi: 10.1142/S0218127406016033

    CrossRef Google Scholar

    [12] A. V. Mikhailov, V. S. Novikov and J. P. Wang, On classification of integrable non-evolutionary equations, Stud. Appl. Math, 2007, 118(4), 419-457.

    Google Scholar

    [13] D. Temesgen and J. Li, Existence of kink and unbounded traveling wave solutions of the Casimir equation for the Ito system, Journal of Applied Analysis and Computation, 2017, 7(2), 632-643.

    Google Scholar

    [14] D. Temesgen and J. Li, Dynamical behaviour and exact solutions of thirteenth order derivative nonlinear Schr$\ddot{o}$dinger equation, Journal of Applied Analysis and Computation, 2018, 8(1), 250-271.

    Google Scholar

Figures(6)

Article Metrics

Article views(2399) PDF downloads(539) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint