[1]
|
E. AvilaAbraham, C. PechErika and R. Esquivel. Global stability of a distributed delayed viral model with general incidence rate, Open Mathematics, 2018, 16, 1374-1389. doi: 10.1515/math-2018-0117
CrossRef Google Scholar
|
[2]
|
T. Burton and V. Huston, Repellers in systems with infinite delay. Journal of Mathematical Analysis and Applications, 1989, 137, 240-263. doi: 10.1016/0022-247X(89)90287-4
CrossRef Google Scholar
|
[3]
|
G. Butler, H. I. Freedman and P. Waltman, Uniform persistence system, Proc. Amer. Math. Soc, 1986, 96, 425-430. doi: 10.1090/S0002-9939-1986-0822433-4
CrossRef Google Scholar
|
[4]
|
A. M. Elaiw and S. A. Azoz, Global properties of a class of HIV infection models with Beddington-DeAngelis functional response, Mathematical Methods in the Applied Sciences, 2013, 4, 383-394.
Google Scholar
|
[5]
|
P. Georgescu and Y. H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM Journal on Applied Mathematics, 2006, 67, 337-353.
Google Scholar
|
[6]
|
J. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM Journal on Mathematical Analysis, 1989, 20, 388-395. doi: 10.1137/0520025
CrossRef Google Scholar
|
[7]
|
G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response, Applied Mathematics Letters, 2009, 22, 1690-1693. doi: 10.1016/j.aml.2009.06.004
CrossRef Google Scholar
|
[8]
|
G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM Journal on Applied Mathematics, 2010, 70, 2693–2708.
Google Scholar
|
[9]
|
Y. Kuang, Delay differential equations with applications in population dynamics, Academics Press, Boston, 1993.
Google Scholar
|
[10]
|
A. Li, Y. Song and D. Xu, Dynamical behavior of a predator-prey system with two delays and stage structure for the prey, Nonlinear Dynamics, 2016, 5, 1-17. doi: 10.5890/JAND.2016.03.001
CrossRef Google Scholar
|
[11]
|
M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM Journal on Applied Mathematics, 2010, 70, 2434-2448. doi: 10.1137/090779322
CrossRef Google Scholar
|
[12]
|
M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays, Journal of Mathematical Analysis and Applications, 2010, 361, 38-47. doi: 10.1016/j.jmaa.2009.09.017
CrossRef Google Scholar
|
[13]
|
S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy, Mathematical Biosciences and Engineering, 2010, 3, 675-685.
Google Scholar
|
[14]
|
Y. Liu and C. Wu, Global dynamics for an HIV infection model with Crowley-Martin functional response and two distributed delays, Journal of Systems Science and Complexity, 2018, 31, 385-395. doi: 10.1007/s11424-017-6038-3
CrossRef Google Scholar
|
[15]
|
C. Lv, L. Huang and Z. Yuan, Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response, Commun Nonlinear Sci Numer Simulat, 2014, 19, 121-127. doi: 10.1016/j.cnsns.2013.06.025
CrossRef Google Scholar
|
[16]
|
C. C. McCluskey, Global stability fo ran SIR epidemic model with delay and nonlinear incidence, Nonlinear Analysis: Real World Applications, 2010, 11, 3106-3109. doi: 10.1016/j.nonrwa.2009.11.005
CrossRef Google Scholar
|
[17]
|
Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed delays, Journal of Mathematical Analysis and Applications, 2011, 375, 14-27. doi: 10.1016/j.jmaa.2010.08.025
CrossRef Google Scholar
|
[18]
|
P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Mathematical Biosciences, 2002, 179, 73-94. doi: 10.1016/S0025-5564(02)00099-8
CrossRef Google Scholar
|
[19]
|
M. A. Nowak and C. R. Bangham, Population dynamics of immune responses to persistent viruses, Science, 1996, 272, 74-79. doi: 10.1126/science.272.5258.74
CrossRef Google Scholar
|
[20]
|
S. Pankavich, The effects of latent infection on the dynamics of HIV, Differential Equations and Dynamical Systems, 2015, 1, 1-23.
Google Scholar
|
[21]
|
K. A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, Mathematical Biosciences, 2012, 235, 98-109. doi: 10.1016/j.mbs.2011.11.002
CrossRef Google Scholar
|
[22]
|
G. Rost and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Mathematical Biosciences and Engineering, 2008, 5, 389-402. doi: 10.3934/mbe.2008.5.389
CrossRef Google Scholar
|
[23]
|
A. M. Shehata, A. M. Elaiw, E. K. Elnahary, M. Abul-Ez, Stability analysis of humoral immunity HIV infection models with RTI and discrete delays, International Journal of Dynamics and Control, 2017, 5, 811-831. doi: 10.1007/s40435-016-0235-0
CrossRef Google Scholar
|
[24]
|
H. Shu, L. Wang and J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL immune responses, SIAM Journal on Applied Mathematics, 2013, 73, 1280-13020. doi: 10.1137/120896463
CrossRef Google Scholar
|
[25]
|
J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with two distributed delays, Mathematical Medicine and Biology, 2012, 29, 283-300. doi: 10.1093/imammb/dqr009
CrossRef Google Scholar
|
[26]
|
L. Wang and M. Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4 T cells, Mathematical Biosciences, 2006, 200, 44-57. doi: 10.1016/j.mbs.2005.12.026
CrossRef Google Scholar
|
[27]
|
X. Wang, Y. Tao and X. Song, A delayed HIV-1 infection model with Beddington-DeAngelis functional response, Nonlinear Dynamics, 2010, 62, 67-72. doi: 10.1007/s11071-010-9699-1
CrossRef Google Scholar
|
[28]
|
H. Xiang, L. Feng and H. Huo, Stability of the virus dynamics model with Beddington-DeAngelis functional response and delays, Applied Mathematical Modelling, 2013, 37, 5414-5423. doi: 10.1016/j.apm.2012.10.033
CrossRef Google Scholar
|
[29]
|
H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV-1 dynamics, Mathematical Medicine and Biology, 2008, 25, 99-112. doi: 10.1093/imammb/dqm010
CrossRef Google Scholar
|