Citation: | Yunlan Wei, Xiaoyu Jiang, Zhaolin Jiang, Sugoog Shon. ON INVERSES AND EIGENPAIRS OF PERIODIC TRIDIAGONAL TOEPLITZ MATRICES WITH PERTURBED CORNERS[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 178-191. doi: 10.11948/20190105 |
[1] | J. Bender, M. M$\ddot{u}$ller, M. Otaduy, T. Matthias and M. Miles, A survey on position-based simulation methods in computer graphics, Comput. Graph. Forum., 2014, 33, 228-251. doi: 10.1111/cgf.12346 |
[2] | R. H. Chan, X. Q. Jin, Circulant and skew-circulant preconditioners for skew-Hermitian type Toeplitz systems, BIT 31, 1991, 632-646. doi: 10.1007/BF01933178 |
[3] | S. S. Cheng, Partial difference equations, Taylor and Francis, London, 2003. |
[4] | M. Dow, Explicit inverses of Toeplitz and associated matrices, ANZIAM J., 2008, 44, 185-215. doi: 10.21914/anziamj.v44i0.493 |
[5] |
M. El-Mikkawy and F. Atlan, A novel algorithm for inverting a general $k$-tridiagonal matrix, Appl. Math. Lett., 2014, 32, 41-47. doi: 10.1016/j.aml.2014.02.015
CrossRef $k$-tridiagonal matrix" target="_blank">Google Scholar |
[6] |
M. El-Mikkawy and F. Atlan, A new recursive algorithm for inverting general $k$-tridiagonal matrices, Appl. Math. Lett., 2015, 44, 34-39. doi: 10.1016/j.aml.2014.12.018
CrossRef $k$-tridiagonal matrices" target="_blank">Google Scholar |
[7] | M. El-Mikkawy, A new computational algorithm for solving periodic tri-diagonal linear systems, Appl. Math. Comput., 2005, 161, 691-696. |
[8] | M. El-Shehawey, G. El-Shreef and A. ShAl-Henawy, Analytical inversion of general periodic tridiagonal matrices, J. Math. Anal. Appl., 2008, 345, 123-134. doi: 10.1016/j.jmaa.2008.04.002 |
[9] | Q. H. Feng and F. W. Meng, Explicit solutions for space-time fractional partial differential equations in mathematical physics by a new generalized fractional Jacobi elliptic equation-based sub-equation method, Optik, 2016, 127, 7450-7458. doi: 10.1016/j.ijleo.2016.05.147 |
[10] |
C. M. da Fonseca and J. Petronilho, Explicit inverse of a tridiagonal $k$-Toeplitz matrix, Numerische Mathematik, 2005, 100, 457-482. doi: 10.1007/s00211-005-0596-3
CrossRef $k$-Toeplitz matrix" target="_blank">Google Scholar |
[11] | C. M. da Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math., 2007, 200, 283-286. doi: 10.1016/j.cam.2005.08.047 |
[12] | G. H. Golub and C. F. Van Loan, Matrix Computations third ed., The John Hopkins University Press, Baltimore, 1996. |
[13] | S. Holmgren, K. Otto, Iterative solution methods and preconditioners for non-symmetric non-diagonally dominant block-tridiagonaI systems of equations, Dept. of Computer Sci., Uppsala Univ., Sweden, 1989. |
[14] | R. W. Hockney and C.R. Jesshope, Parallel Computers, Adam Hilger, Bristol, 1981. |
[15] | Y. Huang and W. F. McColl, Analytical inversion of general tridiagonal matrices, J. Phys. A: Math. Gen., 1997, 30, 7919. doi: 10.1088/0305-4470/30/22/026 |
[16] | X. Y. Jiang and K. Hong, Skew cyclic displacements and inversions of two innovative patterned matrices, Appl. Math. Comput., 2017, 308, 174-184. |
[17] | X. Y. Jiang, K. Hong and Z. W. Fu, Skew cyclic displacements and decompositions of inverse matrix for an innovative structure matrix, J. Nonlinear Sci. Appl., 2017, 10, 4058-4070. doi: 10.22436/jnsa.010.08.02 |
[18] | Z. L. Jiang and D. D. Wang, Explicit group inverse of an innovative patterned matrix, Appl. Math. Comput., 2016, 274, 220-228. |
[19] | Z. L. Jiang, X. T. Chen and J. M. Wang, The explicit inverses of CUPL-Toeplitz and CUPL-Hankel matrices, E. Asian J. Appl. Math., 2017, 7, 38-54. doi: 10.4208/eajam.070816.191016a |
[20] |
J. T. Jia and S. M. Li, Symbolic algorithms for the inverses of general $k$-tridiagonal matrices, Comput. Math. Appl., 2015, 70, 3032-3042. doi: 10.1016/j.camwa.2015.10.018
CrossRef $k$-tridiagonal matrices" target="_blank">Google Scholar |
[21] | J. T. Jia and S. M. Li, On the inverse and determinant of general bordered tridiagonal matrices, Comput. Math. Appl., 2015, 69, 503-509. doi: 10.1016/j.camwa.2015.01.012 |
[22] | J. T. Jia and Q. X. Kong, A symbolic algorithm for periodic tridiagonal systems of equations, J. Math. Chem., 2014, 52, 2222-2233. doi: 10.1007/s10910-014-0378-1 |
[23] |
J. T. Jia, Tomohiro Sogabe and Moawwad El-Mikkawy, Inversion of $k$-tridiagonal matrices with Toeplitz structure, Comput. Math. Appl., 2013, 65, 116-125. doi: 10.1016/j.camwa.2012.11.001
CrossRef $k$-tridiagonal matrices with Toeplitz structure" target="_blank">Google Scholar |
[24] |
J. T. Jia, Tomohiro Sogabe and Moawwad El-Mikkawy, Inversion of $k$-tridiagonal matrices with Toeplitz structure, Comput. Math. Appl., 2013, 65, 116-125. doi: 10.1016/j.camwa.2012.11.001
CrossRef $k$-tridiagonal matrices with Toeplitz structure" target="_blank">Google Scholar |
[25] | M. Krizek, F. Luca and L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer Science & Business Media, 2013. |
[26] | M. Myllykoski, R. Glowinski, T. K$\ddot{a}$rkk$\ddot{a}$inen and T. Rossi, A GPU-accelerated augmented Lagrangian based L$^{1}$-mean curvature image denoising algorithm implementation, WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision, Plzen, Czech Republic, Union Agency, 2015. |
[27] | M. Myllykoski, T. Rossi and J. Toivanen, On solving separable block tridiagonal linear systems using a GPU implementation of radix-4 PSCR method, J. Parallel Distrib. Comput., 2018, 115, 56-66. doi: 10.1016/j.jpdc.2018.01.004 |
[28] | H. J. Nussbaumer, Fast Fourier Transform and convolution algorithms, Springer Science & Business Media, 1981. |
[29] | H. J. Nussbaumer, Digital filtering using complex Mersenne transforms, IBM J. Res. Dev., 1976, 20, 498-504. doi: 10.1147/rd.205.0498 |
[30] | H. J. Nussbaumer, Digital filtering using pseudo Fermat number transform, IEEE Trans. Acoust. Speech, Signal Processing, 1977, 25, 79-83. |
[31] | C. M. Rader, Discrete convolution via Mersenne transforms, IEEE Trans. Comput C., 1972, 21, 1269-1273. |
[32] | R. M. Robinson, Mersenne and Fermat numbers, P. Am. Math. Soc., 1954, 5, 842-846. doi: 10.1090/S0002-9939-1954-0064787-4 |
[33] | K. H. Rosen, Discrete mathematics and its applications, McGraw-Hill, New York, 2011. |
[34] | J. Shao, Z. W. Zheng and F. W. Meng, Oscillation criteria for fractional differential equations with mixed nonlinearities, Adv. Differ. Equ-ny., 2013, 2013, 323. doi: 10.1186/1687-1847-2013-323 |
[35] | Y. G. Sun and F. W. Meng, Interval criteria for oscillation of second-order differential equations with mixed nonlinearities, Appl. Math. Comput., 2008, 198, 375-381. |
[36] | W. C. Siu and A. G. Constantinides, Fast mersenne number transforms for the computation of discrete fourier transforms, Signal Processing, 1985, 9, 125-131. doi: 10.1016/0165-1684(85)90035-0 |
[37] | H. Tim and K. Emrah, An analytical approach: Explicit inverses of periodic tridiagonal matrices, J. Comput. Appl. Math., 2018, 335, 207-226. doi: 10.1016/j.cam.2017.11.038 |
[38] | R. A. Usmani, Inversion of a tridiagonal Jacobi matrix, Linear Algebra Appl., 1994, 212, 413-414. |
[39] | H. H. Wang, A parallel method for tridiagonal equations, ACM Trans. Math. Softw., 1981, 7, 170-183. doi: 10.1145/355945.355947 |
[40] | R. Xu and F. W. Meng, Some new weakly singular integral inequalities and their applications to fractional differential equations, J. Inequal. Appl., 2016, 2016, 78. doi: 10.1186/s13660-016-1015-2 |
[41] | W. D. Yang, K. L. Li and K. Q. Li, A parallel solving method for block-tridiagonal equations on CPU-GPU heterogeneous computing systems, J. Supercomput., 2017, 73, 1760-1781. doi: 10.1007/s11227-016-1881-x |
[42] | W. C. Yueh and S. S. Cheng, Explicit eigenvalues and inverses of tridiagonal Toeplitz matrices with four perturbed corners, ANZIAM J., 2008, 49, 361-387. doi: 10.1017/S1446181108000102 |
[43] | Y. P. Zheng, S. Shon and J. Kim, Cyclic displacements and decompositions of inverse matrices for CUPL Toeplitz matrices, J. Math. Anal. Appl., 2017, 455, 727-741. doi: 10.1016/j.jmaa.2017.06.016 |
[44] | F. Z. Zhang, The Schur Complement and Its Applications, Springer Science & Business Media, New York, 2006. |
[45] | B. S. Zuo, Z. L. Jiang and D. Q. Fu, Determinants and inverses of Ppoeplitz and Ppankel matrices, Special Matrices, 2018, 6, 201-215. doi: 10.1515/spma-2018-0017 |