| 
	                    [1]
	                 | 
	            					
																										R. Arditi and L. R. Ginzburg,  Coupling in predator-prey dynamics: Ratio-dependence, Journal of Theoretical Biology, 1989, 139(3), 311-326. doi: 10.1016/S0022-5193(89)80211-5
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [2]
	                 | 
	            					
																										R. Arditi, L. R. Ginzburg and H. R. Akcakaya,  Variation in plankton densities among lakes: a case for ratio-dependent models, The American Naturalist, 1991, 138(5), 1287-1296. doi: 10.1086/285286
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [3]
	                 | 
	            					
																										R. Arditi, N. Perrin and H. Saiah,  Functional responses and heterogeneities: an experimental test with cladocerans, Oikos., 1991, 60(1), 69-75. doi: 10.2307/3544994
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [4]
	                 | 
	            					
																										R. Arditi and H. Saiah,  Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 1992, 73(5), 1544-1551. doi: 10.2307/1940007
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [5]
	                 | 
	            					
																										H. Beirao da Veiga,  On the global regularity for singular p-systems under non-homogeneous dirichlet boundary conditions, Journal of Mathematical Analysis and Applications, 2013, 398, 527-533. doi: 10.1016/j.jmaa.2012.08.058
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [6]
	                 | 
	            					
																										P. A. Braza,  The bifurcation structure of the holling-tanner model for predator-prey interactions using two-timing, SIAM J. Appl. Math., 2003, 63(3), 889-904. doi: 10.1137/S0036139901393494
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [7]
	                 | 
	            					
																										R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Academic Press, New York, 2003.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [8]
	                 | 
	            					
																										C. Chen and L. Hung,  Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive lotka-volterra systems of three competing species, Comm. Pure Appl Anal., 2017, 15(4), 1451-1469.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [9]
	                 | 
	            					
																										S. Chen, J. Shi and J. Wei, Global stability and hopf bifurcation in a delayed diffusive leslie-gower predator-prey system, International Journal of Bifurcation and Chaos, 2012. 10.1142/S0218127412500617.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [10]
	                 | 
	            					
																										L. Ciannelli, M. Hunsicker, M. Hidalgo et al.,  Theory, consequences and evidence of eroding population spatial structure in harvested marine fishes, Mar Ecol Prog Ser., 2013, 480, 227-243. doi: 10.3354/meps10067
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [11]
	                 | 
	            					
																										J. B. Collings,  Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge, Bull. Math. Biol., 1995, 57(1), 63-76. doi: 10.1016/0092-8240(94)00024-7
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [12]
	                 | 
	            					
																										Y. Du and S. B. Hsu,  A diffusive predator-prey model in heterogeneous environment, Journal of Differential Equations, 2004, 203(2), 331-364. doi: 10.1016/j.jde.2004.05.010
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [13]
	                 | 
	            					
																										A. P. Gutierrez,  Physiological basis of ratio-dependent predator-prey theory: the metabolic pool model as a paradigm, Ecology, 1992, 73(5), 1552-1563. doi: 10.2307/1940008
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [14]
	                 | 
	            					
																										J. Ha and S. Nakagiri,  Damped sine-gordon equations with non-homogeneous dirichlet boundary conditions, Journal of Mathematical Analysis and Applications, 2001, 263(2), 708-720.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [15]
	                 | 
	            					
																										M. Han,  Bifurcation theory and methods of dynamical systems, Science Press, Beijing, 1995.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [16]
	                 | 
	            					
																										M. P. Hassell,  The dynamics of arthropod predator-prey systems, Monogr. Popul. Biol., 1978, 65(13), 1-237.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [17]
	                 | 
	            					
																										L. Hauser and G. R. Carvalho,  Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts, Fish Fish., 2010, 9(4), 333-362.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [18]
	                 | 
	            					
																										C. S. Holling,  The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Ent. Soc. Can., 1965, 97(45), 1-60.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [19]
	                 | 
	            					
																										C. S. Holling,  The functional response of invertebrate predators to prey density, Mem. Ent. Soc. Can., 1966, 98(48), 1-86.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [20]
	                 | 
	            					
																										S. B. Hsu and T. W. Huang,  Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 1995, 55(3), 763-783. doi: 10.1137/S0036139993253201
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [21]
	                 | 
	            					
																										W. Ko and K. Ryu,  Non-constant positive steady-states of a diffusive predator-prey system in homogeneous environment, J. Math. Anal. Appl., 2007, 327, 539-549. doi: 10.1016/j.jmaa.2006.04.077
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [22]
	                 | 
	            					
																										A. Korobeinikov,  A lyapunov function for leslie-gower predator-prey models, Appl. Math. Lett., 2001, 14(6), 697-699. doi: 10.1016/S0893-9659(01)80029-X
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [23]
	                 | 
	            					
																										Y. Lou and W. Ni,  Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 1996, 131, 79-131. doi: 10.1006/jdeq.1996.0157
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [24]
	                 | 
	            					
																										R. M. May,  Limit cycles in predator-prey communities, Science, 1972, 177, 900-902. doi: 10.1126/science.177.4052.900
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [25]
	                 | 
	            					
																										R. M. May,  Stability and Complexity in Model Ecosystems, Academic Press, New York, 1973.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [26]
	                 | 
	            					
																										R. Peng and M. Wang,  Positive steady sates of the holling-tanner prey-predator model with diffusion, Proceedings of the Royal Society of Edinburgh, 2005, 135(1), 149-164. doi: 10.1017/S0308210500003814
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [27]
	                 | 
	            					
																										H. Reiss, G. Hoarau and M. Dickey-Collas,  Genetic population structure of marine fish: mismatch between biological and fisheries management units, Fish Fish., 2009, 10(4), 361-395. doi: 10.1111/j.1467-2979.2008.00324.x
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [28]
	                 | 
	            					
																										D. Robichaud and G. Rose,  Migratory behaviour and range in atlantic cod: inference from a century of tagging, Fish Fish., 2004, 5(3), 185-214. doi: 10.1111/j.1467-2679.2004.00141.x
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [29]
	                 | 
	            					
																										E. Saez and E. Gonzalez-Olivares,  Dynamics of a predator-prey model, Siam Journal on Applied Mathematics, 1999, 59(5), 1867-1878. doi: 10.1137/S0036139997318457
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [30]
	                 | 
	            					
																										T. Saha and C. Chakrabarti,  Dynamical analysis of a delayed ratio-dependent holling-tanner predator-prey model, Journal of Mathematical Analysis and Applications, 2009, 358(2), 389-402. doi: 10.1016/j.jmaa.2009.03.072
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [31]
	                 | 
	            					
																										D. E. Schindler, H. Ray and C. Brandon,  Population diversity and the portfolio effect in an exploited species, Nature, 2010, 465(7298), 609-612. doi: 10.1038/nature09060
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [32]
	                 | 
	            					
																										S. M. Sohel Rana,  Bifurcations and chaos control in a discrete-time predator-prey system of leslie type, Journal of Applied Analysis and Computation, 2019, 9(1), 31-44.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [33]
	                 | 
	            					
																										J. Song, M. Hu and Y. Bai,  Dynamic analysis of a non-autonomous ratio-dependent predator-prey model with additional food, Journal of Applied Analysis and Computation, 2018, 8(6), 1893-1909.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [34]
	                 | 
	            					
																										N. Stenseth, P. Jorde and K. Chan,  Ecological and genetic impact of atlantic cod larval drift in the skagerrak, Proc Roy Soc Biol., 2006, 273(1590), 1085-1092. doi: 10.1098/rspb.2005.3290
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [35]
	                 | 
	            					
																										J. T. Tanner,  The stability and the intrinsic growth rates of prey and predator populations, Ecology, 1975, 56(4), 855-867. doi: 10.2307/1936296
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [36]
	                 | 
	            					
																										J. Wang, J. Shi and J. Wei,  Dynamics and pattern formation in a diffusive predator-prey system with strong allee effect in prey, J. Differential Equations, 2011, 251(4), 1276-1304.
							 							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [37]
	                 | 
	            					
																										J. Wang, J. Shi and J. Wei,  Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems, J. Differential Equations, 2016, 260(4), 3495-3523. doi: 10.1016/j.jde.2015.10.036
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [38]
	                 | 
	            					
																										L. Wang, J. Watmough and F. Yu,  Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with dirichlet boundary conditions, Mathematical Biosciences and Engineering, 2015, 12(4), 699-715. doi: 10.3934/mbe.2015.12.699
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [39]
	                 | 
	            					
																										D. J. Wollkind, J. B. Collings and J. A. Logan,  Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees, Bull. Math. Biol., 1988, 50(4), 379-409. doi: 10.1016/S0092-8240(88)90005-5
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [40]
	                 | 
	            					
																										S. Wu, J. Wang and J. Shi,  Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models. Methods. Appl. Sci., 2018, 28(11), 2275-2312. doi: 10.1142/S0218202518400158
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [41]
	                 | 
	            					
																										Y. Yamada,  Stability of steady states for prey-predator diffusion equations with homogeneous dirichlet conditions, SIAM J. Math. Anal., 1990, 21(2), 327-345. doi: 10.1137/0521018
							 							CrossRef							Google Scholar
							
						 
											 | 
			
					
									| 
	                    [42]
	                 | 
	            					
																										F. Yi, J. Wei and J. Shi,  Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Eqs., 2009, 246(4), 1944-1977.
							 							Google Scholar
							
						 
											 |