2020 Volume 10 Issue 1
Article Contents

Yingwei Song, Tie Zhang. SPATIAL PATTERN FORMATIONS IN DIFFUSIVE PREDATOR-PREY SYSTEMS WITH NON-HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 165-177. doi: 10.11948/20190097
Citation: Yingwei Song, Tie Zhang. SPATIAL PATTERN FORMATIONS IN DIFFUSIVE PREDATOR-PREY SYSTEMS WITH NON-HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 165-177. doi: 10.11948/20190097

SPATIAL PATTERN FORMATIONS IN DIFFUSIVE PREDATOR-PREY SYSTEMS WITH NON-HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS

  • Corresponding author: Email address: ztmath@163.com (T. Zhang)
  • Fund Project: The authors were supported by the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds (No. 2013ZCX02)
  • A reaction-diffusion predator-prey system with non-homogeneous Dirichlet boundary conditions describes the persistence of predator and prey species on the boundary. Compared with homogeneous Neumann boundary conditions, the former conditions may prompt or prevent the spatial patterns produced through diffusion-induced instability. The spatial pattern formation induced by non-homogeneous Dirichlet boundary conditions is characterized by the Turing type linear instability of homogeneous state and bifurcation theory. Furthermore, transient spatiotemporal behaviors are observed through numerical simulations.
    MSC: 35B32, 35K57, 37L10
  • 加载中
  • [1] R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, Journal of Theoretical Biology, 1989, 139(3), 311-326. doi: 10.1016/S0022-5193(89)80211-5

    CrossRef Google Scholar

    [2] R. Arditi, L. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent models, The American Naturalist, 1991, 138(5), 1287-1296. doi: 10.1086/285286

    CrossRef Google Scholar

    [3] R. Arditi, N. Perrin and H. Saiah, Functional responses and heterogeneities: an experimental test with cladocerans, Oikos., 1991, 60(1), 69-75. doi: 10.2307/3544994

    CrossRef Google Scholar

    [4] R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption, Ecology, 1992, 73(5), 1544-1551. doi: 10.2307/1940007

    CrossRef Google Scholar

    [5] H. Beirao da Veiga, On the global regularity for singular p-systems under non-homogeneous dirichlet boundary conditions, Journal of Mathematical Analysis and Applications, 2013, 398, 527-533. doi: 10.1016/j.jmaa.2012.08.058

    CrossRef Google Scholar

    [6] P. A. Braza, The bifurcation structure of the holling-tanner model for predator-prey interactions using two-timing, SIAM J. Appl. Math., 2003, 63(3), 889-904. doi: 10.1137/S0036139901393494

    CrossRef Google Scholar

    [7] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Academic Press, New York, 2003.

    Google Scholar

    [8] C. Chen and L. Hung, Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive lotka-volterra systems of three competing species, Comm. Pure Appl Anal., 2017, 15(4), 1451-1469.

    Google Scholar

    [9] S. Chen, J. Shi and J. Wei, Global stability and hopf bifurcation in a delayed diffusive leslie-gower predator-prey system, International Journal of Bifurcation and Chaos, 2012. 10.1142/S0218127412500617.

    Google Scholar

    [10] L. Ciannelli, M. Hunsicker, M. Hidalgo et al., Theory, consequences and evidence of eroding population spatial structure in harvested marine fishes, Mar Ecol Prog Ser., 2013, 480, 227-243. doi: 10.3354/meps10067

    CrossRef Google Scholar

    [11] J. B. Collings, Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge, Bull. Math. Biol., 1995, 57(1), 63-76. doi: 10.1016/0092-8240(94)00024-7

    CrossRef Google Scholar

    [12] Y. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, Journal of Differential Equations, 2004, 203(2), 331-364. doi: 10.1016/j.jde.2004.05.010

    CrossRef Google Scholar

    [13] A. P. Gutierrez, Physiological basis of ratio-dependent predator-prey theory: the metabolic pool model as a paradigm, Ecology, 1992, 73(5), 1552-1563. doi: 10.2307/1940008

    CrossRef Google Scholar

    [14] J. Ha and S. Nakagiri, Damped sine-gordon equations with non-homogeneous dirichlet boundary conditions, Journal of Mathematical Analysis and Applications, 2001, 263(2), 708-720.

    Google Scholar

    [15] M. Han, Bifurcation theory and methods of dynamical systems, Science Press, Beijing, 1995.

    Google Scholar

    [16] M. P. Hassell, The dynamics of arthropod predator-prey systems, Monogr. Popul. Biol., 1978, 65(13), 1-237.

    Google Scholar

    [17] L. Hauser and G. R. Carvalho, Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts, Fish Fish., 2010, 9(4), 333-362.

    Google Scholar

    [18] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Ent. Soc. Can., 1965, 97(45), 1-60.

    Google Scholar

    [19] C. S. Holling, The functional response of invertebrate predators to prey density, Mem. Ent. Soc. Can., 1966, 98(48), 1-86.

    Google Scholar

    [20] S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 1995, 55(3), 763-783. doi: 10.1137/S0036139993253201

    CrossRef Google Scholar

    [21] W. Ko and K. Ryu, Non-constant positive steady-states of a diffusive predator-prey system in homogeneous environment, J. Math. Anal. Appl., 2007, 327, 539-549. doi: 10.1016/j.jmaa.2006.04.077

    CrossRef Google Scholar

    [22] A. Korobeinikov, A lyapunov function for leslie-gower predator-prey models, Appl. Math. Lett., 2001, 14(6), 697-699. doi: 10.1016/S0893-9659(01)80029-X

    CrossRef Google Scholar

    [23] Y. Lou and W. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 1996, 131, 79-131. doi: 10.1006/jdeq.1996.0157

    CrossRef Google Scholar

    [24] R. M. May, Limit cycles in predator-prey communities, Science, 1972, 177, 900-902. doi: 10.1126/science.177.4052.900

    CrossRef Google Scholar

    [25] R. M. May, Stability and Complexity in Model Ecosystems, Academic Press, New York, 1973.

    Google Scholar

    [26] R. Peng and M. Wang, Positive steady sates of the holling-tanner prey-predator model with diffusion, Proceedings of the Royal Society of Edinburgh, 2005, 135(1), 149-164. doi: 10.1017/S0308210500003814

    CrossRef Google Scholar

    [27] H. Reiss, G. Hoarau and M. Dickey-Collas, Genetic population structure of marine fish: mismatch between biological and fisheries management units, Fish Fish., 2009, 10(4), 361-395. doi: 10.1111/j.1467-2979.2008.00324.x

    CrossRef Google Scholar

    [28] D. Robichaud and G. Rose, Migratory behaviour and range in atlantic cod: inference from a century of tagging, Fish Fish., 2004, 5(3), 185-214. doi: 10.1111/j.1467-2679.2004.00141.x

    CrossRef Google Scholar

    [29] E. Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, Siam Journal on Applied Mathematics, 1999, 59(5), 1867-1878. doi: 10.1137/S0036139997318457

    CrossRef Google Scholar

    [30] T. Saha and C. Chakrabarti, Dynamical analysis of a delayed ratio-dependent holling-tanner predator-prey model, Journal of Mathematical Analysis and Applications, 2009, 358(2), 389-402. doi: 10.1016/j.jmaa.2009.03.072

    CrossRef Google Scholar

    [31] D. E. Schindler, H. Ray and C. Brandon, Population diversity and the portfolio effect in an exploited species, Nature, 2010, 465(7298), 609-612. doi: 10.1038/nature09060

    CrossRef Google Scholar

    [32] S. M. Sohel Rana, Bifurcations and chaos control in a discrete-time predator-prey system of leslie type, Journal of Applied Analysis and Computation, 2019, 9(1), 31-44.

    Google Scholar

    [33] J. Song, M. Hu and Y. Bai, Dynamic analysis of a non-autonomous ratio-dependent predator-prey model with additional food, Journal of Applied Analysis and Computation, 2018, 8(6), 1893-1909.

    Google Scholar

    [34] N. Stenseth, P. Jorde and K. Chan, Ecological and genetic impact of atlantic cod larval drift in the skagerrak, Proc Roy Soc Biol., 2006, 273(1590), 1085-1092. doi: 10.1098/rspb.2005.3290

    CrossRef Google Scholar

    [35] J. T. Tanner, The stability and the intrinsic growth rates of prey and predator populations, Ecology, 1975, 56(4), 855-867. doi: 10.2307/1936296

    CrossRef Google Scholar

    [36] J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong allee effect in prey, J. Differential Equations, 2011, 251(4), 1276-1304.

    Google Scholar

    [37] J. Wang, J. Shi and J. Wei, Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems, J. Differential Equations, 2016, 260(4), 3495-3523. doi: 10.1016/j.jde.2015.10.036

    CrossRef Google Scholar

    [38] L. Wang, J. Watmough and F. Yu, Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with dirichlet boundary conditions, Mathematical Biosciences and Engineering, 2015, 12(4), 699-715. doi: 10.3934/mbe.2015.12.699

    CrossRef Google Scholar

    [39] D. J. Wollkind, J. B. Collings and J. A. Logan, Metastability in a temperature-dependent model system for predator-prey mite outbreak interactions on fruit trees, Bull. Math. Biol., 1988, 50(4), 379-409. doi: 10.1016/S0092-8240(88)90005-5

    CrossRef Google Scholar

    [40] S. Wu, J. Wang and J. Shi, Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models. Methods. Appl. Sci., 2018, 28(11), 2275-2312. doi: 10.1142/S0218202518400158

    CrossRef Google Scholar

    [41] Y. Yamada, Stability of steady states for prey-predator diffusion equations with homogeneous dirichlet conditions, SIAM J. Math. Anal., 1990, 21(2), 327-345. doi: 10.1137/0521018

    CrossRef Google Scholar

    [42] F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Eqs., 2009, 246(4), 1944-1977.

    Google Scholar

Figures(6)

Article Metrics

Article views(2684) PDF downloads(529) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint