Citation: | Caixia Guo, Jianmin Guo, Shugui Kang, Huapeng Li. EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTION FOR NONLINEAR FRACTIONAL Q-DIFFERENCE EQUATION WITH INTEGRAL BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2020, 10(1): 153-164. doi: 10.11948/20190055 |
[1] | R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Math. Proc. Cambridge., 1969, 66(2), 365-370. doi: 10.1017/S0305004100045060 |
[2] | R. P. Agarwal, A. Alsaedi, B. Ahmad and H. Al-Hutami, Sequential fractional q-difference equations with nonlocal sub-strip boundary conditions, Dyn. Contin., Discret I., 2015, 22, 1-12. |
[3] | B. Ahmad, S. Etemad, M. Ettefagh and S. Rezapour, On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions, Bull. Math. Soc. Sci. Math. Roum, 2016, 59, 119-134. |
[4] | B. Ahmad, J. J. Nieto, A. Alsaedi and H. Al-Hutami, Boundary value problems of nonlinear fractional q-difference (integral) equations with two fractional orders and four-point nonlocal integral boundary conditions, Filomat, 2014, 28(8), 1719-1736. doi: 10.2298/FIL1408719A |
[5] | B. Ahmad, J. J. Nieto, A. Alsaedi and H. Al-Hutami, Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions, J. Franklin. I., 2014, 351(5), 2890-2909. doi: 10.1016/j.jfranklin.2014.01.020 |
[6] | B. Ahmad, S. K. Ntouyas, J. Tariboon et al., Impulsive fractional q-integro-difference equations with separated boundary conditions, J. Appl. Math. Comput., 2016, 281, 199-213. doi: 10.1016/j.amc.2016.01.051 |
[7] | W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc., 1966, 15(2), 135-140. doi: 10.1017/S0013091500011469 |
[8] | M. Bohner and R. Chieochan, Floquet theory for q-difference equations, Sarajevo. J. Math, 2012, 21(8), 355-366. |
[9] | Y. Cui, S. Kang and H. Chen, Uniqueness of solutions for an integral boundary value problem with fractional q-differences, J. Appl. Math. Comput., 2018, 8(2), 524-531. |
[10] | S. Etemad, S. K. Ntouyas and B. Ahmad, Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders, Mathematics, 2019, 7(8), 1-15. |
[11] | H. Feng and C. Zhai, Existence and uniqueness of positive solutions for a class of fractional differential equation with integral boundary conditions, Nonlinear Anal., Model. Control, 2017, 22, 160-172. doi: 10.15388/NA.2017.2.2 |
[12] |
R. Ferreira, Nontrivial solutions for fractional $ q $-difference boundary value problems, Electron. J. Qual. Theo., 2010, 70, 1-10.
$ q $-difference boundary value problems" target="_blank">Google Scholar |
[13] | R. Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences, Appl. Math. Comput., 2011, 61(2), 367-373. |
[14] | R. Ferreira, Positive solutions of a nonlinear q-fractional difference equation with integral boundary conditions, Int. J. Differ. Equ., 2014, 9(2), 135-145. |
[15] | D. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Academic press, New York, 1988. |
[16] | Y. Li and W. Yang, Monotone iterative method for nonlinear fractional q-difference equations with integral boundary conditions, Adv. Differ. Equ, 2015, 294, 1-10. |
[17] | P. M. Rajković, S. D. Marinković and M. S. Stanković, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discr. Math., 2007, 1(1), 311-323. |
[18] | X. Su, M. Jia and X. Fu, On positive solutions of eigenvalue problems for a class of p-laplacian fractional differential equations, J. Appl. Anal. Comput., 2018, 8(1), 152-171. |
[19] | J. Tariboon, S. K. Ntouyas and P. Agarwal, New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations, Adv. Differ. Equ., 2015, 18, 1-19. |
[20] | C. Yang, C. Zhai and M. Hao, Uniqueness of positive solutions for several classes of sum operator equations and applications, J. Inequal. Appl., 2014, 58, 1-28. |
[21] | C. Zhai and D. R. Anderson, A sum operator equation and applications to nonlinear elastic beam equations and lane-emden-fowler equations, J. Math. Anal. Appl., 2011, 375(2), 388-400. |
[22] | Q. Zhao and W. Yang, Positive solutions for singular coupled integral boundary value problems of nonlinear higher-order fractional q-difference equations, Adv. Differ. Equ, 2015, 290, 1-22. |
[23] | X. Zhao, C. Chai and W. Ge, Existence and nonexistence results for a class of fractional boundary value problems, J. Appl. Math. Comput., 2013, 41, 17-31. doi: 10.1007/s12190-012-0590-8 |