Citation: | Jianmin Guo, Shugui Kang, Shiwang Ma, Guang Zhang. GROUND STATE SOLUTIONS OF NONLINEAR SCHRÖDINGER EQUATIONS WITH ASYMPTOTICALLY PERIODIC POTENTIALS[J]. Journal of Applied Analysis & Computation, 2021, 11(4): 1663-1677. doi: 10.11948/20190137 |
In this paper, by using a concentration-compactness argument, we study the existence of ground state solutions for nonlinear Schrödinger equations with asymptotically periodic potentials. In particular, when the coefficients are "competing", some sufficient conditions are given to guarantee the existence of ground state solutions, which improve and generalize some previous results in the literature.
[1] | C. O. Alves and G. F. Germano, Ground state solution for a class of indefinite variational problems with critical growth, J. Diff. Eqs, 2018, 265, 444-477. doi: 10.1016/j.jde.2018.02.039 |
[2] | A. Bahri and Y. Li. On a min-max procedure for the existence of a positive solution for certain scalar field equations in RN, Rev. Mat. Iber, 1990, 6, 1-15. |
[3] | A. Bahri and P. L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. Henri Poincaré Analyse non linéaire, 1997, 14(3), 365-413. doi: 10.1016/S0294-1449(97)80142-4 |
[4] | H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Archive for Rational Mechanics and Analysis, 1983, 82(4), 313-345. doi: 10.1007/BF00250555 |
[5] | G. Cerami, Some nonlinear elliptic problems in unbounded domains, Milan Journal of Mathematics, 2006, 74(1), 47-77. doi: 10.1007/s00032-006-0059-z |
[6] | G. Cerami and A. Pomponio, On Some Scalar Field Equations with Competing Coefficients, Mathematics, 2015, 1-19. |
[7] | G. Cerami and A. Pomponio, On Some Scalar Field Equations with Competing Coefficients, International Mathematics Research Notices, 2018, 8, 2481-2507. |
[8] | W. Ding and W. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal, 1986, 91, 283-308. doi: 10.1007/BF00282336 |
[9] | G. Evéquoz and T. Weth, Entire Solutions to Nonlinear Scalar Field Equations with Indefinite Linear Part, Advanced Nonlinear Studies, 2012, 12, 281-314. doi: 10.1515/ans-2012-0206 |
[10] | T. Hu and L. Lu, On some nonlocal equations with competing coefficients, J. Math. Anal. Appl., 2018, 460, 863-884. doi: 10.1016/j.jmaa.2017.12.027 |
[11] | X. Lin and X. Tang, Nehari-Type Ground State Positive Solutions for Superlinear Asymptotically Periodic Schrödinger Equations, Abstract and Applied Analysis, 2014, 2014, 1-7. |
[12] | H. Lins and E. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Analysis, 2009, 71(7), 2890-2905. doi: 10.1007/s00526-009-0299-1 |
[13] | P. H. Lions, The concentration-compactness principle in the calculus of variations: The locally compact cases, Part Ⅰ and Part Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1984, 1, 223-283. doi: 10.1016/S0294-1449(16)30422-X |
[14] | X. Liu, J. Liu and Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var., 2013, 46, 641-669. doi: 10.1007/s00526-012-0497-0 |
[15] | R. De Marchi, Schrödinger equations with asymptotically periodic terms, Proceedings of the Royal Society of Edinburgh, 2015, 145(04), 745-757. doi: 10.1017/S0308210515000104 |
[16] | V. Moroz and J. Van Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, J. Differential Equations, 2013, 254(8), 3089-3145. doi: 10.1016/j.jde.2012.12.019 |
[17] | V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotices, J. Functional Analysis, 2013, 265(2), 153-184. doi: 10.1016/j.jfa.2013.04.007 |
[18] | X. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equations, Sci. China Math., 2015, 58, 715-728. doi: 10.1007/s11425-014-4957-1 |
[19] | J. Wang, M. Qu and L. Xiao, Existence of positive solutions to the nonlinear Choquard equation with competing potentials, Electronic J. Differential Equations, 2018, 2018, 1-21. |
[20] | M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. |
[21] | Y. Xue, J. Liu and C. Tang, A ground state solution for an asymptotically periodic quasilinear Schrödinger equation, Comput. Math. Appl, 2017, 74(6), 1143-1157. doi: 10.1016/j.camwa.2017.05.033 |
[22] | Y. Xue and C. Tang, Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth, Comm. Pur. Appl. Anal., 2018, 17(3), 1121-1145. doi: 10.3934/cpaa.2018054 |