2019 Volume 9 Issue 6
Article Contents

Yue Liu, Zhijun Zeng. ANALYSIS OF A PREDATOR-PREY MODEL WITH CROWLEY-MARTIN AND MODIFIED LESLIE-GOWER SCHEMES WITH STOCHASTIC PERTURBATION[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2409-2435. doi: 10.11948/20190144
Citation: Yue Liu, Zhijun Zeng. ANALYSIS OF A PREDATOR-PREY MODEL WITH CROWLEY-MARTIN AND MODIFIED LESLIE-GOWER SCHEMES WITH STOCHASTIC PERTURBATION[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2409-2435. doi: 10.11948/20190144

ANALYSIS OF A PREDATOR-PREY MODEL WITH CROWLEY-MARTIN AND MODIFIED LESLIE-GOWER SCHEMES WITH STOCHASTIC PERTURBATION

  • In this paper, we study a nonautonomous predator-prey model with Crowley-Martin and modified Leslie-Gower schemes with stochastic perturbation. The existence of a global positive solution and stochastically ultimate boundedness are obtained. Sufficient conditions are established for extinction, persistence in the mean, and stochastic permanence of the system. Finally, simulations are carried out to verify our results.
    MSC: 34E10, 34F05, 92B05
  • 加载中
  • [1] R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio-dependence, J. Theoret. Biol., 1989, 139, 311–326. doi: 10.1016/S0022-5193(89)80211-5

    CrossRef Google Scholar

    [2] M. Bandyopadhyay and J. Chattopadyay, Ratio-dependent predator-prey model, effect of environmental fluctuation and stability, Nonlinearity, 2005, 18, 913–936. doi: 10.1088/0951-7715/18/2/022

    CrossRef Google Scholar

    [3] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, 1975, J. Anim. Ecol., 44, 331–340. doi: 10.2307/3866

    CrossRef Google Scholar

    [4] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.

    Google Scholar

    [5] S. J. Gao, Y. J. Liu, J. J. Nieto and H. Andrade, Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission, Math. Comput. Simul., 2011, 81, 1855–1868. doi: 10.1016/j.matcom.2010.10.032

    CrossRef Google Scholar

    [6] Z. K. Guo, H. F. Huo, Q. Y. Ren and H. Xiang, Bifurcation of a modified Leslie-Gower system with discrete and distributed delays, J. Nonlinear Model. Anal., 2019, 1(1), 73–91.

    Google Scholar

    [7] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 2001, 43, 525–546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [8] Z. Y. Hu, Z. D. Teng, C. J. Jia, L. Zhang and X. Chen, Complex dynamical behaviors in a discrete eco-epidemiological model with disease in prey, Adv. Differ. Equ., 2014, 2014, 1–19. doi: 10.1186/1687-1847-2014-1

    CrossRef Google Scholar

    [9] C. S. Holling, The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Can. Entomol., 1959, 91, 293–320. doi: 10.4039/Ent91293-5

    CrossRef Google Scholar

    [10] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, New York, 1989.

    Google Scholar

    [11] C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation, J. Math. Anal. Appl., 2009, 359, 482–498. doi: 10.1016/j.jmaa.2009.05.039

    CrossRef Google Scholar

    [12] D. Q. Jiang and N. Z. Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 2005, 303, 164–172. doi: 10.1016/j.jmaa.2004.08.027

    CrossRef Google Scholar

    [13] P. H. Leslie, Some further notes on the use of matrices in population mathematic, Biometrica, 1948, 35, 213–245. doi: 10.1093/biomet/35.3-4.213

    CrossRef Google Scholar

    [14] P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrica, 1960, 47, 219–234. doi: 10.1093/biomet/47.3-4.219

    CrossRef Google Scholar

    [15] X. Y. Li and X. R. Mao, Population dynamical behavior of nonautonomous Lotka-Volterra competitive system with random perturbation, Discret. Contin. Dyn. Syst., 2009, 24, 523–545. doi: 10.3934/dcds.2009.24.523

    CrossRef Google Scholar

    [16] Y. G. Lin, D. Q. Jiang and S. Wang, Stationary distribution of a stochastic SIS epidemic model with vaccination, Physica A, 2014, 394, 187–197. doi: 10.1016/j.physa.2013.10.006

    CrossRef Google Scholar

    [17] M. Liu, C. X. Du and M. L. Deng, Persistence and extinction of a modified Leslie-Gower Holling-type Ⅱ stochastic predator-prey model with impulsive toxicant input in polluted environments, Nonlinear Anal.-Hybrid Syst., 2018, 27, 177–190. doi: 10.1016/j.nahs.2017.08.001

    CrossRef Google Scholar

    [18] M. Liu and K Wang, Persistence and extinction in stochastic nonautonomous logistic systems, J. Math. Anal. Appl., 2011, 375, 443–457. doi: 10.1016/j.jmaa.2010.09.058

    CrossRef Google Scholar

    [19] M. Liu, K. Wang and Q. Wu, Survival analysis of stochastic competitive models in a polluted enviornment and stochastic competitive exclusion principle, Bull. Math. Biol., 2011, 73, 1969–2012. doi: 10.1007/s11538-010-9569-5

    CrossRef Google Scholar

    [20] X. Q. Liu, S. M. Zhong, B. D. Tian and F. X. Zheng, Asymptotic properties of a stochastic predator-prey model with Crowley-Martin functional response, J. Appl. Math. Comput., 2013, 43, 479–490.

    Google Scholar

    [21] X. R. Mao, Stochastic Different Equations and Application, 2nd edition, Horwood, Chichester, 2008.

    Google Scholar

    [22] X. R. Mao and C. G. Yuan, Stochastic differential equations with Markovian switching, Imperial College Press, London, 2006.

    Google Scholar

    [23] E. C. Pielou, An Introduction to Mathematical Ecology, Wiley, New York, 1969.

    Google Scholar

    [24] X. Y. Song and Y F Li, Dynamic behaviors of the periodic predatorCprey model with modified Leslie-Gower Holling-type Ⅱ schemes and impulsive effect, Nonlinear Anal.-Real World Appl., 2008, 9(1), 64–79. doi: 10.1016/j.nonrwa.2006.09.004

    CrossRef Google Scholar

    [25] L. Wang, Z. D. Teng and H. J. Jiang, Global attractivity of a discrete SIRS epidemic model with standard incidence rate, Math. Method. Appl. Sci., 2013, 36, 601–619. doi: 10.1002/mma.2734

    CrossRef Google Scholar

    [26] P. J. Witbooi, Stability of an SEIR epidemic model with independent stochastic perturbations, Physica A, 2013, 392, 4928–4936. doi: 10.1016/j.physa.2013.06.025

    CrossRef Google Scholar

    [27] Y. Zhang, S. H. Chen and S. J. Gao, Analysis of a nonautonomous stochastic predator-prey model with Crowley-Martin functional response, Adv. Differ. Equ., 2016, 2016, 1–28. doi: 10.1186/s13662-015-0739-5

    CrossRef Google Scholar

Figures(5)

Article Metrics

Article views(2692) PDF downloads(535) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint