2019 Volume 9 Issue 6
Article Contents

César Torres, Ziheng Zhang, Amado Mendez. FRACTIONAL HAMILTONIAN SYSTEMS WITH POSITIVE SEMI-DEFINITE MATRIX[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2436-2453. doi: 10.11948/20190157
Citation: César Torres, Ziheng Zhang, Amado Mendez. FRACTIONAL HAMILTONIAN SYSTEMS WITH POSITIVE SEMI-DEFINITE MATRIX[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2436-2453. doi: 10.11948/20190157

FRACTIONAL HAMILTONIAN SYSTEMS WITH POSITIVE SEMI-DEFINITE MATRIX

  • We study the existence of solutions for the following fractional Hamiltonian systems $ \left\{ \begin{array}{ll} - _tD^{\alpha}_{\infty}(_{-\infty}D^{\alpha}_{t}u(t))-\lambda L(t)u(t)+\nabla W(t,u(t)) = 0,\\[0.1cm] u\in H^{\alpha}(\mathbb{R},\mathbb{R}^n), \end{array} \right. \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(\mbox{FHS})_\lambda $ where $ \alpha\in (1/2,1) $, $ t\in \mathbb{R} $, $ u\in \mathbb{R}^n $, $ \lambda>0 $ is a parameter, $ L\in C(\mathbb{R},\mathbb{R}^{n^2}) $ is a symmetric matrix, $ W\in C^1(\mathbb{R} \times \mathbb{R}^n,\mathbb{R}) $. Assuming that $ L(t) $ is a positive semi-definite symmetric matrix, that is, $ L(t)\equiv 0 $ is allowed to occur in some finite interval $ T $ of $ \mathbb{R} $, $ W(t,u) $ satisfies some superquadratic conditions weaker than Ambrosetti-Rabinowitz condition, we show that (FHS)$ _\lambda $ has a solution which vanishes on $ \mathbb{R}\setminus T $ as $ \lambda \to \infty $, and converges to some $ \tilde{u}\in H^{\alpha}( \mathbb R, \mathbb R^n) $. Here, $ \tilde{u}\in E_{0}^{\alpha} $ is a solution of the Dirichlet BVP for fractional systems on the finite interval $ T $. Our results are new and improve recent results in the literature even in the case $ \alpha = 1 $.
    MSC: 34C37, 35A15, 35B38
  • 加载中
  • [1] A. Benhassine, Infinitely many solutions for a class of fractional Hamiltonian systems with combined nonlinearities, Anal. Math. Phys., 2019, 9(1), 289–312. doi: 10.1007/s13324-017-0197-1

    CrossRef Google Scholar

    [2] V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 1991, 4(4), 693–727. doi: 10.1090/S0894-0347-1991-1119200-3

    CrossRef Google Scholar

    [3] G. Chen, Superquadratic or asymptotically quadratic Hamiltonian systems: ground state homoclinic orbits, Annali di Matematica, 2015, 194(3), 903–918. doi: 10.1007/s10231-014-0403-9

    CrossRef Google Scholar

    [4] Y. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 1995, 25(11), 1095–1113. doi: 10.1016/0362-546X(94)00229-B

    CrossRef Google Scholar

    [5] I. Ekeland, Convexity Methods in Hamiltonian Mechnics, Springer-Verlag Berlin Heidelberg, 1990.

    Google Scholar

    [6] R. Hilfer, Applications of fractional calculus in physics, World Science, Singapore, 2000.

    Google Scholar

    [7] M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 2005, 219(2), 375–389.

    Google Scholar

    [8] M. Izydorek and J. Janczewska, Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl., 2007, 335(2), 1119–1127. doi: 10.1016/j.jmaa.2007.02.038

    CrossRef Google Scholar

    [9] F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Intern. Journal of Bif. and Chaos, 2012, 22(4), 1–17.

    Google Scholar

    [10] R. Klages, G. Radons and M. Sokolov, Anomalous Transport: Foundations and Applications. VCH, Weinheim, 2007.

    Google Scholar

    [11] A. Kilbas, H. Srivastava and J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Vol 204, Singapore, 2006.

    Google Scholar

    [12] N. Laskin, Fractional Schrödinger equation. Phys. Rev. E, 2002, 66, 056108. doi: 10.1103/PhysRevE.66.056108

    CrossRef Google Scholar

    [13] Y. Lv, Ch. Tang and B. Guo, Ground state solution for a class fractional Hamiltonian systems, Journal of Applied Analysis and Computation, 2018, 8(2), 620–648.

    Google Scholar

    [14] A. Malinowska and D. Torres, Introduction to the fractional calculus of variations. Imperial College Press, London, 2012.

    Google Scholar

    [15] A. Malinowska, T. Odzijewicz and D. Torres, Advanced Methods in the Fractional Calculus of Variations, Springer Cham Heidelberg New York Dordrecht London, 2015.

    Google Scholar

    [16] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.

    Google Scholar

    [17] A. Mendez and C. Torres, Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivatives, Fract. Calc. Appl. Anal., 2015, 18(4), 875–890.

    Google Scholar

    [18] N. Nyamoradi and Y. Zhou, Homoclinic Orbits for a Class of Fractional Hamiltonian Systems via Variational Methods, J. Optim. Theory Appl., 2017, 174(1), 210–222. doi: 10.1007/s10957-016-0864-7

    CrossRef Google Scholar

    [19] W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Differential Integral Equations, 1992, 5(5), 1115–1120.

    Google Scholar

    [20] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. in. Math., vol. 65, American Mathematical Society, 1986.

    Google Scholar

    [21] P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 1991, 206(3), 473–499.

    Google Scholar

    [22] F. Riewe, Mechanics with fractional derivatives. Phys Rev E, 1997, 55(3), 3581–3592. doi: 10.1103/PhysRevE.55.3581

    CrossRef Google Scholar

    [23] M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Boston, 1999.

    Google Scholar

    [24] J. Sun and T-F. Wu, Homoclinic solutions for a second-order Hamiltonian system with a positive semi-definite matrix, Chaos, Solitons & Fractals, 2015, 76, 24–31.

    Google Scholar

    [25] C. Torres, Existence of solutions for a class of fractional Hamiltonian systems, Electron. J. Differential Equations, 2013, 2013(259), 1–12.

    Google Scholar

    [26] C. Torres, Existence of solutions for perturbed fractional Hamiltonian systems, Journal of Fractional Calculus and Applications, 2015, 6(1), 62–70.

    Google Scholar

    [27] C. Torres, Exstence and concentration of solution for a class of fractional Hamiltonian systems with subquadratic potential, Proc. Indian Acad. Sci. (Math. Sci.), 2018, 128(50).

    Google Scholar

    [28] C. Torres, Mountain pass solution for a fractional boundary value problem, Journal of Fractional Calculus and Applications, 2014, 1(1), 1–10.

    Google Scholar

    [29] C. Torres, Ground state solution for differential equations with left and right fractional derivatives, Math. Meth. Appl. Sci., 2015, 38(18), 5063–5073. doi: 10.1002/mma.3426

    CrossRef Google Scholar

    [30] C. Torres and Z. H. Zhang, Concentration of ground state solutions for fractional Hamiltonian systems, Topol. Methods Nonlinear Anal., 2017, 50(2), 623–642. doi: 10.12775/TMNA.2017.033

    CrossRef Google Scholar

    [31] J. Xu, D. O'Regan and K. Zhang, Multiple solutions for a class of fractional Hamiltonian systems, Fractional Calculus Applied Analysis, 2015, 18(1), 48–63.

    Google Scholar

    [32] S. Zhang, Existence of a solution for the fractional differential equation with nonlinear boundary conditions, Comput. Math. Appl., 2011, 61(4), 1202–1208. doi: 10.1016/j.camwa.2010.12.071

    CrossRef Google Scholar

    [33] Z. Zhang and R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian systems, Math. Methods Appl. Sci., 2014, 37(13), 1873–1883. doi: 10.1002/mma.2941

    CrossRef Google Scholar

    [34] Z. Zhang and R. Yuan, Solutions for subquadratic fractional Hamiltonian systems without coercive conditions, Math. Methods Appl. Sci., 2014, 37(18), 2934–2945. doi: 10.1002/mma.3031

    CrossRef Google Scholar

    [35] Z. Zhang and C. Torres, Solutions for a class of fractional Hamiltonian systems with a parameter, J. Appl. Math. Comput., 2017, 54(1–2), 451–468. doi: 10.1007/s12190-016-1018-7

    CrossRef Google Scholar

    [36] Y. Zhou and L. Zhang, Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems, Comput. Math. with Appl., 2017, 73(6), 1325–1345. doi: 10.1016/j.camwa.2016.04.041

    CrossRef Google Scholar

Article Metrics

Article views(2372) PDF downloads(436) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint