[1]
|
A. Benhassine, Infinitely many solutions for a class of fractional Hamiltonian systems with combined nonlinearities, Anal. Math. Phys., 2019, 9(1), 289–312. doi: 10.1007/s13324-017-0197-1
CrossRef Google Scholar
|
[2]
|
V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 1991, 4(4), 693–727. doi: 10.1090/S0894-0347-1991-1119200-3
CrossRef Google Scholar
|
[3]
|
G. Chen, Superquadratic or asymptotically quadratic Hamiltonian systems: ground state homoclinic orbits, Annali di Matematica, 2015, 194(3), 903–918. doi: 10.1007/s10231-014-0403-9
CrossRef Google Scholar
|
[4]
|
Y. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 1995, 25(11), 1095–1113. doi: 10.1016/0362-546X(94)00229-B
CrossRef Google Scholar
|
[5]
|
I. Ekeland, Convexity Methods in Hamiltonian Mechnics, Springer-Verlag Berlin Heidelberg, 1990.
Google Scholar
|
[6]
|
R. Hilfer, Applications of fractional calculus in physics, World Science, Singapore, 2000.
Google Scholar
|
[7]
|
M. Izydorek and J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 2005, 219(2), 375–389.
Google Scholar
|
[8]
|
M. Izydorek and J. Janczewska, Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl., 2007, 335(2), 1119–1127. doi: 10.1016/j.jmaa.2007.02.038
CrossRef Google Scholar
|
[9]
|
F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Intern. Journal of Bif. and Chaos, 2012, 22(4), 1–17.
Google Scholar
|
[10]
|
R. Klages, G. Radons and M. Sokolov, Anomalous Transport: Foundations and Applications. VCH, Weinheim, 2007.
Google Scholar
|
[11]
|
A. Kilbas, H. Srivastava and J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Vol 204, Singapore, 2006.
Google Scholar
|
[12]
|
N. Laskin, Fractional Schrödinger equation. Phys. Rev. E, 2002, 66, 056108. doi: 10.1103/PhysRevE.66.056108
CrossRef Google Scholar
|
[13]
|
Y. Lv, Ch. Tang and B. Guo, Ground state solution for a class fractional Hamiltonian systems, Journal of Applied Analysis and Computation, 2018, 8(2), 620–648.
Google Scholar
|
[14]
|
A. Malinowska and D. Torres, Introduction to the fractional calculus of variations. Imperial College Press, London, 2012.
Google Scholar
|
[15]
|
A. Malinowska, T. Odzijewicz and D. Torres, Advanced Methods in the Fractional Calculus of Variations, Springer Cham Heidelberg New York Dordrecht London, 2015.
Google Scholar
|
[16]
|
J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989.
Google Scholar
|
[17]
|
A. Mendez and C. Torres, Multiplicity of solutions for fractional Hamiltonian systems with Liouville-Weyl fractional derivatives, Fract. Calc. Appl. Anal., 2015, 18(4), 875–890.
Google Scholar
|
[18]
|
N. Nyamoradi and Y. Zhou, Homoclinic Orbits for a Class of Fractional Hamiltonian Systems via Variational Methods, J. Optim. Theory Appl., 2017, 174(1), 210–222. doi: 10.1007/s10957-016-0864-7
CrossRef Google Scholar
|
[19]
|
W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Differential Integral Equations, 1992, 5(5), 1115–1120.
Google Scholar
|
[20]
|
P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. in. Math., vol. 65, American Mathematical Society, 1986.
Google Scholar
|
[21]
|
P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 1991, 206(3), 473–499.
Google Scholar
|
[22]
|
F. Riewe, Mechanics with fractional derivatives. Phys Rev E, 1997, 55(3), 3581–3592. doi: 10.1103/PhysRevE.55.3581
CrossRef Google Scholar
|
[23]
|
M. Schechter, Linking Methods in Critical Point Theory, Birkhäuser, Boston, 1999.
Google Scholar
|
[24]
|
J. Sun and T-F. Wu, Homoclinic solutions for a second-order Hamiltonian system with a positive semi-definite matrix, Chaos, Solitons & Fractals, 2015, 76, 24–31.
Google Scholar
|
[25]
|
C. Torres, Existence of solutions for a class of fractional Hamiltonian systems, Electron. J. Differential Equations, 2013, 2013(259), 1–12.
Google Scholar
|
[26]
|
C. Torres, Existence of solutions for perturbed fractional Hamiltonian systems, Journal of Fractional Calculus and Applications, 2015, 6(1), 62–70.
Google Scholar
|
[27]
|
C. Torres, Exstence and concentration of solution for a class of fractional Hamiltonian systems with subquadratic potential, Proc. Indian Acad. Sci. (Math. Sci.), 2018, 128(50).
Google Scholar
|
[28]
|
C. Torres, Mountain pass solution for a fractional boundary value problem, Journal of Fractional Calculus and Applications, 2014, 1(1), 1–10.
Google Scholar
|
[29]
|
C. Torres, Ground state solution for differential equations with left and right fractional derivatives, Math. Meth. Appl. Sci., 2015, 38(18), 5063–5073. doi: 10.1002/mma.3426
CrossRef Google Scholar
|
[30]
|
C. Torres and Z. H. Zhang, Concentration of ground state solutions for fractional Hamiltonian systems, Topol. Methods Nonlinear Anal., 2017, 50(2), 623–642. doi: 10.12775/TMNA.2017.033
CrossRef Google Scholar
|
[31]
|
J. Xu, D. O'Regan and K. Zhang, Multiple solutions for a class of fractional Hamiltonian systems, Fractional Calculus Applied Analysis, 2015, 18(1), 48–63.
Google Scholar
|
[32]
|
S. Zhang, Existence of a solution for the fractional differential equation with nonlinear boundary conditions, Comput. Math. Appl., 2011, 61(4), 1202–1208. doi: 10.1016/j.camwa.2010.12.071
CrossRef Google Scholar
|
[33]
|
Z. Zhang and R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian systems, Math. Methods Appl. Sci., 2014, 37(13), 1873–1883. doi: 10.1002/mma.2941
CrossRef Google Scholar
|
[34]
|
Z. Zhang and R. Yuan, Solutions for subquadratic fractional Hamiltonian systems without coercive conditions, Math. Methods Appl. Sci., 2014, 37(18), 2934–2945. doi: 10.1002/mma.3031
CrossRef Google Scholar
|
[35]
|
Z. Zhang and C. Torres, Solutions for a class of fractional Hamiltonian systems with a parameter, J. Appl. Math. Comput., 2017, 54(1–2), 451–468. doi: 10.1007/s12190-016-1018-7
CrossRef Google Scholar
|
[36]
|
Y. Zhou and L. Zhang, Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems, Comput. Math. with Appl., 2017, 73(6), 1325–1345. doi: 10.1016/j.camwa.2016.04.041
CrossRef Google Scholar
|