2019 Volume 9 Issue 6
Article Contents

Boling Guo, Fangfang Li. GLOBAL SMOOTH SOLUTION FOR THE COMPRESSIBLE LANDAU-LIFSHITZ-BLOCH EQUATION[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2454-2463. doi: 10.11948/20190173
Citation: Boling Guo, Fangfang Li. GLOBAL SMOOTH SOLUTION FOR THE COMPRESSIBLE LANDAU-LIFSHITZ-BLOCH EQUATION[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2454-2463. doi: 10.11948/20190173

GLOBAL SMOOTH SOLUTION FOR THE COMPRESSIBLE LANDAU-LIFSHITZ-BLOCH EQUATION

  • Corresponding author: Email address: lifang_868@126.com(F. Li)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Grant No. 11801067)
  • The Landau-Lifshitz-Bloch equation is often used to describe micromagnetic phenomenon under high temperature. In this paper, we establish the existence and uniqueness of global smooth solution for the initial problem of the compressible Landau-Lifshitz-Bloch equation in dimension one.
    MSC: 35K15, 35Q60, 82D40
  • 加载中
  • [1] V. Berti, M. Fabrizio and C. Giorgi, A three-dimensional phase transition model in ferromagnetism: Existence and uniqueness, Journal of Mathematical Analysis and Applications, 2009, 355(2), 661–674. doi: 10.1016/j.jmaa.2009.01.065

    CrossRef Google Scholar

    [2] S. Ding, B. Guo and F. Su, Measure-valued solution to the strongly degenerate compressible heisenberg chain equations, Journal of Mathematical Physics, 1999, 40(3), 1153–1162. doi: 10.1063/1.532826

    CrossRef Google Scholar

    [3] S. Ding, B. Guo and F. Su, Smooth solution for one-dimensional inhomogeneous heisenberg chain equations, Proceedings of the Royal Society of Edinburgh, 1999, 129(06), 1171–1184. doi: 10.1017/S0308210500019338

    CrossRef Google Scholar

    [4] J. Gao, l. Han and Y. Huang, Solitary waves for the generalized nonautonomous dual-power nonlinear schrödinger equations with variable coefficients, Journal of Nonlinear Modeling and Analysis, 2019, 1(2), 251–260.

    Google Scholar

    [5] D. A. Garanin, Generalized equation of motion for a ferromagnet, Physica A Statistical Mechanics and Its Applications, 1991, 172(3), 470–491. doi: 10.1016/0378-4371(91)90395-S

    CrossRef Google Scholar

    [6] D. A. Garanin, V. V. Ishchenko and L. V. Panina, Dynamics of an ensemble of single-domain magnetic particles, Theoretical and Mathematical Physics, 1990, 82(2), 169–179. doi: 10.1007/BF01079045

    CrossRef Google Scholar

    [7] B. Guo and S. Ding, Landau-Lifshitz Equations, World Scientific Publishing Co. Pty. Ltd., Hackensack, 2008.

    Google Scholar

    [8] C. Guo and B. Guo, The existence of global solutions for the fourth-order nonlinear schrödinger equations, Journal of Applied Analysis and Computation, 2019, 9(3), 1183–1192.

    Google Scholar

    [9] N. Kazantseva, D. Hinzke, U. Nowak et al., Towards multiscale modeling of magnetic materials : Simulations of fept, Physical Review B, 2009, 77(18), 998–1002.

    Google Scholar

    [10] K. N. Le, Weak solutions of the landau-lifshitz-bloch equation, Journal of Differential Equations, 2016, 261(12), 6699–6717. doi: 10.1016/j.jde.2016.09.002

    CrossRef Google Scholar

    [11] Q. Long, J. Chen and G. Yang, Finite time blow-up and global existence of weak solutions for pseudo-parabolic equation with exponential nonlinearity, Journal of Applied Analysis and Computation, 2018, 8(1), 105–122.

    Google Scholar

    [12] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Birkh$\ddot a$user, 1995.

    Google Scholar

    [13] E. Magyari, Solitary waves along the compressible heisenberg chain, Journal of Physics C Solid State Physics, 1982, 15(32), 1159–1163. doi: 10.1088/0022-3719/15/32/008

    CrossRef Google Scholar

    [14] T. A. Ostler, M. O. A. Ellis, D. Hinzke and U. Nowak, Temperature dependent ferromagnetic resonance via the landau-lifshitz-bloch equation: Application to fept, Physical Review B, 2014, 90(9), 094402. doi: 10.1103/PhysRevB.90.094402

    CrossRef Google Scholar

    [15] Y. Zhou and B. Guo, Existence and uniqueness of smooth solution for system of ferromagnetic chain, Sci. Sinica A, 1991, 34, 157–166.

    Google Scholar

Article Metrics

Article views(2337) PDF downloads(870) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint