[1]
|
R. Asheghi and A. Bakhshalizadeh, Limit cycles in a Liénard system with a cusp and a nilpotent saddle of order 7, Chaos Solitons Fractals, 2015, 73, 120–128. doi: 10.1016/j.chaos.2015.01.009
CrossRef Google Scholar
|
[2]
|
A. Atabaigi and H. R. Z. Zangeneh, Bifurcation of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems of degree 5 with a cusp, J. Appl. Anal. Comput., 2011, 1(3), 299–313.
Google Scholar
|
[3]
|
A. Bakhshalizadeh, R. Asheghi and R. Hoseyni, Zeros of hyperelliptic integrals of the first kind for special hyperelliptic Hamiltonians of degree 7, Chaos Solitons Fractals, 2017, 103, 279–288. doi: 10.1016/j.chaos.2017.06.021
CrossRef Google Scholar
|
[4]
|
A. Bakhshalizadeh, R. Asheghi, H. R. Z. Zangeneh and M. Ezatpanah Gashti, Limit cycles near an eye-figure loop in some polynomial Liénard systems, J. Math. Anal. Appl., 2017, 455(1), 500–515.
Google Scholar
|
[5]
|
T. R. Blows and N. G. Lloyd, The number of small-amplitude limit cycles of Liénard equations, Math. Proc. Cambridge Philos. Soc., 1984, 95(2), 359–366. doi: 10.1017/S0305004100061636
CrossRef Google Scholar
|
[6]
|
L. Chen and M. Wang, The relative position, and the number, of limit cycles of a quadratic differential system, Acta Math. Sinica, 1979, 22(6), 751–758.
Google Scholar
|
[7]
|
C. Christopher and S. Lynch, Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 1999, 12(4), 1099–1112.
Google Scholar
|
[8]
|
M. Han, Liapunov constants and Hopf cyclicity of Liénard systems, Ann. Differential Equations, 1999, 15, 113–126.
Google Scholar
|
[9]
|
M. Han, On Hopf cyclicity of planar systems, J. Math. Anal. Appl., 2000, 245(2), 404–422.
Google Scholar
|
[10]
|
M. Han and V. G. Romanovski, On the number of limit cycles of polynomial Liénard systems, Nonlinear Anal. Real World Appl., 2013, 14(3), 1655–1668. doi: 10.1016/j.nonrwa.2012.11.002
CrossRef Google Scholar
|
[11]
|
M. Han, J. Yang, A.-A. Tarţa and Y. Gao, Limit cycles near homoclinic and heteroclinic loops, J. Dynam. Differential Equations, 2008, 20(4), 923–944.
Google Scholar
|
[12]
|
M. Han, J. Yang and P. Yu, Hopf bifurcations for near-Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2009, 19(12), 4117–4130. doi: 10.1142/S0218127409025250
CrossRef Google Scholar
|
[13]
|
M. Han, H. Zang and J. Yang, Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system, J. Differential Equations, 2009, 246(1), 129–163.
Google Scholar
|
[14]
|
D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc., 1902, 8(10), 437–479. doi: 10.1090/S0002-9904-1902-00923-3
CrossRef Google Scholar
|
[15]
|
R. Kazemi, H. R. Z. Zangeneh and A. Atabaigi, On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems, Nonlinear Anal., 2012, 75(2), 574–587. doi: 10.1016/j.na.2011.08.060
CrossRef Google Scholar
|
[16]
|
C. Li, Abelian integrals and limit cycles, Qual. Theory Dyn. Syst., 2012, 11(1), 111–128.
Google Scholar
|
[17]
|
C. Li, C. Liu and J. Yang, A cubic system with thirteen limit cycles, J. Differential Equations, 2009, 246(9), 3609–3619. doi: 10.1016/j.jde.2009.01.038
CrossRef Google Scholar
|
[18]
|
J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2003, 13(1), 47–106. doi: 10.1142/S0218127403006352
CrossRef Google Scholar
|
[19]
|
J. Li and Y. Liu, New results on the study of Zq-equivariant planar polynomial vector fields, Qual. Theory Dyn. Syst., 2010, 9(1-2), 167–219. doi: 10.1007/s12346-010-0024-7
CrossRef Google Scholar
|
[20]
|
A. Liénard, Étude des oscillations entrenues, Revue Génerale de Électricité, 1928, 23, 946–954.
Google Scholar
|
[21]
|
J. Llibre, A. Mereu and M. Teixeira, Limit cycles of the generalized polynomial Liénard differential equations, Math. Proc. Cambridge Philos. Soc., 2010, 148, 363–383. doi: 10.1017/S0305004109990193
CrossRef Google Scholar
|
[22]
|
P. Moghimi, R. Asheghi and R. Kazemi, On the number of limit cycles bifurcated from a near-Hamiltonian system with a double homoclinic loop of cuspidal type surrounded by a heteroclinic loop, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2018, 28(1), 1850004, 21. doi: 10.1142/S0218127418500049
CrossRef Google Scholar
|
[23]
|
S. Shi, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica, 1980, 23(2), 153–158.
Google Scholar
|
[24]
|
X. Sun, Multiple limit cycles of some strongly nonlinear Liénard–van der Pol oscillator, Appl. Math. Comput., 2015, 270, 620–630.
Google Scholar
|
[25]
|
X. Sun, M. Han and J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Anal., 2011, 74(9), 2948–2965. doi: 10.1016/j.na.2011.01.013
CrossRef Google Scholar
|
[26]
|
Y. Xiong, Bifurcation of limit cycles by perturbing a class of hyper-elliptic Hamiltonian systems of degree five, J. Math. Anal. Appl., 2014, 411(2), 559–573. doi: 10.1016/j.jmaa.2013.06.073
CrossRef Google Scholar
|
[27]
|
Y. Xiong and M. Han, New lower bounds for the Hilbert number of polynomial systems of Liénard type, J. Differential Equations, 2014, 257(7), 2565–2590. doi: 10.1016/j.jde.2014.05.058
CrossRef Google Scholar
|
[28]
|
W. Xu and C. Li, Limit cycles of some polynomial Liénard systems, J. Math. Anal. Appl., 2012, 389(1), 367–378.
Google Scholar
|
[29]
|
W. Xu and C. Li, Number of limit cycles of some polynomial Liénard systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2013, 23(4), 1350064, 13. doi: 10.1142/S0218127413500648
CrossRef Google Scholar
|
[30]
|
J. Yang and W. Ding, Limit cycles of a class of Liénard systems with restoring forces of seventh degree, Appl. Math. Comput., 2018, 316(3703978), 422–437.
Google Scholar
|
[31]
|
J. Yang, P. Yu and X. Sun, On the independent perturbation parameters and the number of limit cycles of a type of Liénard system, J. Math. Anal. Appl., 2018, 464(1), 679–692. doi: 10.1016/j.jmaa.2018.04.020
CrossRef Google Scholar
|