2019 Volume 9 Issue 6
Article Contents

Linlin Li, Junmin Yang. ON THE NUMBER OF LIMIT CYCLES FOR A QUINTIC LIÉNARD SYSTEM UNDER POLYNOMIAL PERTURBATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2464-2481. doi: 10.11948/20190221
Citation: Linlin Li, Junmin Yang. ON THE NUMBER OF LIMIT CYCLES FOR A QUINTIC LIÉNARD SYSTEM UNDER POLYNOMIAL PERTURBATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2464-2481. doi: 10.11948/20190221

ON THE NUMBER OF LIMIT CYCLES FOR A QUINTIC LIÉNARD SYSTEM UNDER POLYNOMIAL PERTURBATIONS

  • Corresponding author: Email address:jmyang@hebtu.edu.cn(J. Yang)
  • Fund Project: The project was supported by National Natural Science Foundation of China (11571090) and Science Foundation of Hebei Normal University (L2017J01)
  • In this paper, we mainly study the number of limit cycles for a quintic Liénard system under polynomial perturbations. In some cases, we give new estimations for the lower bound of the maximal number of limit cycles.
    MSC: 34C07, 34C23
  • 加载中
  • [1] R. Asheghi and A. Bakhshalizadeh, Limit cycles in a Liénard system with a cusp and a nilpotent saddle of order 7, Chaos Solitons Fractals, 2015, 73, 120–128. doi: 10.1016/j.chaos.2015.01.009

    CrossRef Google Scholar

    [2] A. Atabaigi and H. R. Z. Zangeneh, Bifurcation of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems of degree 5 with a cusp, J. Appl. Anal. Comput., 2011, 1(3), 299–313.

    Google Scholar

    [3] A. Bakhshalizadeh, R. Asheghi and R. Hoseyni, Zeros of hyperelliptic integrals of the first kind for special hyperelliptic Hamiltonians of degree 7, Chaos Solitons Fractals, 2017, 103, 279–288. doi: 10.1016/j.chaos.2017.06.021

    CrossRef Google Scholar

    [4] A. Bakhshalizadeh, R. Asheghi, H. R. Z. Zangeneh and M. Ezatpanah Gashti, Limit cycles near an eye-figure loop in some polynomial Liénard systems, J. Math. Anal. Appl., 2017, 455(1), 500–515.

    Google Scholar

    [5] T. R. Blows and N. G. Lloyd, The number of small-amplitude limit cycles of Liénard equations, Math. Proc. Cambridge Philos. Soc., 1984, 95(2), 359–366. doi: 10.1017/S0305004100061636

    CrossRef Google Scholar

    [6] L. Chen and M. Wang, The relative position, and the number, of limit cycles of a quadratic differential system, Acta Math. Sinica, 1979, 22(6), 751–758.

    Google Scholar

    [7] C. Christopher and S. Lynch, Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 1999, 12(4), 1099–1112.

    Google Scholar

    [8] M. Han, Liapunov constants and Hopf cyclicity of Liénard systems, Ann. Differential Equations, 1999, 15, 113–126.

    Google Scholar

    [9] M. Han, On Hopf cyclicity of planar systems, J. Math. Anal. Appl., 2000, 245(2), 404–422.

    Google Scholar

    [10] M. Han and V. G. Romanovski, On the number of limit cycles of polynomial Liénard systems, Nonlinear Anal. Real World Appl., 2013, 14(3), 1655–1668. doi: 10.1016/j.nonrwa.2012.11.002

    CrossRef Google Scholar

    [11] M. Han, J. Yang, A.-A. Tarţa and Y. Gao, Limit cycles near homoclinic and heteroclinic loops, J. Dynam. Differential Equations, 2008, 20(4), 923–944.

    Google Scholar

    [12] M. Han, J. Yang and P. Yu, Hopf bifurcations for near-Hamiltonian systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2009, 19(12), 4117–4130. doi: 10.1142/S0218127409025250

    CrossRef Google Scholar

    [13] M. Han, H. Zang and J. Yang, Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system, J. Differential Equations, 2009, 246(1), 129–163.

    Google Scholar

    [14] D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc., 1902, 8(10), 437–479. doi: 10.1090/S0002-9904-1902-00923-3

    CrossRef Google Scholar

    [15] R. Kazemi, H. R. Z. Zangeneh and A. Atabaigi, On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems, Nonlinear Anal., 2012, 75(2), 574–587. doi: 10.1016/j.na.2011.08.060

    CrossRef Google Scholar

    [16] C. Li, Abelian integrals and limit cycles, Qual. Theory Dyn. Syst., 2012, 11(1), 111–128.

    Google Scholar

    [17] C. Li, C. Liu and J. Yang, A cubic system with thirteen limit cycles, J. Differential Equations, 2009, 246(9), 3609–3619. doi: 10.1016/j.jde.2009.01.038

    CrossRef Google Scholar

    [18] J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2003, 13(1), 47–106. doi: 10.1142/S0218127403006352

    CrossRef Google Scholar

    [19] J. Li and Y. Liu, New results on the study of Zq-equivariant planar polynomial vector fields, Qual. Theory Dyn. Syst., 2010, 9(1-2), 167–219. doi: 10.1007/s12346-010-0024-7

    CrossRef Google Scholar

    [20] A. Liénard, Étude des oscillations entrenues, Revue Génerale de Électricité, 1928, 23, 946–954.

    Google Scholar

    [21] J. Llibre, A. Mereu and M. Teixeira, Limit cycles of the generalized polynomial Liénard differential equations, Math. Proc. Cambridge Philos. Soc., 2010, 148, 363–383. doi: 10.1017/S0305004109990193

    CrossRef Google Scholar

    [22] P. Moghimi, R. Asheghi and R. Kazemi, On the number of limit cycles bifurcated from a near-Hamiltonian system with a double homoclinic loop of cuspidal type surrounded by a heteroclinic loop, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2018, 28(1), 1850004, 21. doi: 10.1142/S0218127418500049

    CrossRef Google Scholar

    [23] S. Shi, A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica, 1980, 23(2), 153–158.

    Google Scholar

    [24] X. Sun, Multiple limit cycles of some strongly nonlinear Liénard–van der Pol oscillator, Appl. Math. Comput., 2015, 270, 620–630.

    Google Scholar

    [25] X. Sun, M. Han and J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Anal., 2011, 74(9), 2948–2965. doi: 10.1016/j.na.2011.01.013

    CrossRef Google Scholar

    [26] Y. Xiong, Bifurcation of limit cycles by perturbing a class of hyper-elliptic Hamiltonian systems of degree five, J. Math. Anal. Appl., 2014, 411(2), 559–573. doi: 10.1016/j.jmaa.2013.06.073

    CrossRef Google Scholar

    [27] Y. Xiong and M. Han, New lower bounds for the Hilbert number of polynomial systems of Liénard type, J. Differential Equations, 2014, 257(7), 2565–2590. doi: 10.1016/j.jde.2014.05.058

    CrossRef Google Scholar

    [28] W. Xu and C. Li, Limit cycles of some polynomial Liénard systems, J. Math. Anal. Appl., 2012, 389(1), 367–378.

    Google Scholar

    [29] W. Xu and C. Li, Number of limit cycles of some polynomial Liénard systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2013, 23(4), 1350064, 13. doi: 10.1142/S0218127413500648

    CrossRef Google Scholar

    [30] J. Yang and W. Ding, Limit cycles of a class of Liénard systems with restoring forces of seventh degree, Appl. Math. Comput., 2018, 316(3703978), 422–437.

    Google Scholar

    [31] J. Yang, P. Yu and X. Sun, On the independent perturbation parameters and the number of limit cycles of a type of Liénard system, J. Math. Anal. Appl., 2018, 464(1), 679–692. doi: 10.1016/j.jmaa.2018.04.020

    CrossRef Google Scholar

Figures(1)

Article Metrics

Article views(2675) PDF downloads(499) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint